diff --git a/docs/ref/contrib/gis/tutorial.txt b/docs/ref/contrib/gis/tutorial.txt index 82c3c93854f..0bdd09e1635 100644 --- a/docs/ref/contrib/gis/tutorial.txt +++ b/docs/ref/contrib/gis/tutorial.txt @@ -78,9 +78,9 @@ file. Edit the database connection settings to match your setup:: DATABASES = { 'default': { - 'ENGINE': 'django.contrib.gis.db.backends.postgis', - 'NAME': 'geodjango', - 'USER': 'geo', + 'ENGINE': 'django.contrib.gis.db.backends.postgis', + 'NAME': 'geodjango', + 'USER': 'geo', }, } @@ -258,7 +258,7 @@ This command should produce the following output: -- Create model WorldBorder -- CREATE TABLE "world_worldborder" ( - "id" serial NOT NULL PRIMARY KEY, + "id" bigserial NOT NULL PRIMARY KEY, "name" varchar(50) NOT NULL, "area" integer NOT NULL, "pop2005" integer NOT NULL, @@ -273,7 +273,7 @@ This command should produce the following output: "mpoly" geometry(MULTIPOLYGON,4326) NOT NULL ) ; - CREATE INDEX "world_worldborder_mpoly_id" ON "world_worldborder" USING GIST ( "mpoly" ); + CREATE INDEX "world_worldborder_mpoly_id" ON "world_worldborder" USING GIST ("mpoly"); COMMIT; If this looks correct, run :djadmin:`migrate` to create this table in the @@ -367,13 +367,20 @@ system associated with it. If it does, the ``srs`` attribute will return a >>> srs = lyr.srs >>> print(srs) - GEOGCS["GCS_WGS_1984", - DATUM["WGS_1984", - SPHEROID["WGS_1984",6378137.0,298.257223563]], - PRIMEM["Greenwich",0.0], - UNIT["Degree",0.0174532925199433]] + GEOGCS["WGS 84", + DATUM["WGS_1984", + SPHEROID["WGS 84",6378137,298.257223563, + AUTHORITY["EPSG","7030"]], + AUTHORITY["EPSG","6326"]], + PRIMEM["Greenwich",0, + AUTHORITY["EPSG","8901"]], + UNIT["degree",0.0174532925199433, + AUTHORITY["EPSG","9122"]], + AXIS["Latitude",NORTH], + AXIS["Longitude",EAST], + AUTHORITY["EPSG","4326"]] >>> srs.proj # PROJ representation - '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs ' + '+proj=longlat +datum=WGS84 +no_defs' This shapefile is in the popular WGS84 spatial reference system -- in other words, the data uses longitude, latitude pairs in @@ -389,7 +396,7 @@ The following code will let you examine the OGR types (e.g. integer or string) associated with each of the fields: >>> [fld.__name__ for fld in lyr.field_types] - ['OFTString', 'OFTString', 'OFTString', 'OFTInteger', 'OFTString', 'OFTInteger', 'OFTInteger', 'OFTInteger', 'OFTInteger', 'OFTReal', 'OFTReal'] + ['OFTString', 'OFTString', 'OFTString', 'OFTInteger', 'OFTString', 'OFTInteger', 'OFTInteger64', 'OFTInteger', 'OFTInteger', 'OFTReal', 'OFTReal'] You can iterate over each feature in the layer and extract information from both the feature's geometry (accessed via the ``geom`` attribute) as well as the @@ -423,11 +430,10 @@ Boundary geometries may be exported as WKT and GeoJSON:: >>> print(geom.json) { "type": "Polygon", "coordinates": [ [ [ 12.415798, 43.957954 ], [ 12.450554, 43.979721 ], ... - ``LayerMapping`` ---------------- -To import the data, use a LayerMapping in a Python script. +To import the data, use a ``LayerMapping`` in a Python script. Create a file called ``load.py`` inside the ``world`` application, with the following code:: @@ -685,7 +691,6 @@ GeoDjango also offers a set of geographic annotations to compute distances and several other operations (intersection, difference, etc.). See the :doc:`functions` documentation. - Putting your data on the map ============================