========================== Using newforms with models ========================== ``ModelForm`` ============= If you're building a database-driven app, chances are you'll have forms that map closely to Django models. For instance, you might have a ``BlogComment`` model, and you want to create a form that lets people submit comments. In this case, it would be redundant to define the field types in your form, because you've already defined the fields in your model. For this reason, Django provides a helper class that let you create a ``Form`` class from a Django model. For example:: >>> from django.newforms import ModelForm # Create the form class. >>> class ArticleForm(ModelForm): ... class Meta: ... model = Article # Creating a form to add an article. >>> form = ArticleForm() # Creating a form to change an existing article. >>> article = Article.objects.get(pk=1) >>> form = ArticleForm(instance=article) Field types ----------- The generated ``Form`` class will have a form field for every model field. Each model field has a corresponding default form field. For example, a ``CharField`` on a model is represented as a ``CharField`` on a form. A model ``ManyToManyField`` is represented as a ``MultipleChoiceField``. Here is the full list of conversions: =============================== ======================================== Model field Form field =============================== ======================================== ``AutoField`` Not represented in the form ``BooleanField`` ``BooleanField`` ``CharField`` ``CharField`` with ``max_length`` set to the model field's ``max_length`` ``CommaSeparatedIntegerField`` ``CharField`` ``DateField`` ``DateField`` ``DateTimeField`` ``DateTimeField`` ``DecimalField`` ``DecimalField`` ``EmailField`` ``EmailField`` ``FileField`` ``FileField`` ``FilePathField`` ``CharField`` ``FloatField`` ``FloatField`` ``ForeignKey`` ``ModelChoiceField`` (see below) ``ImageField`` ``ImageField`` ``IntegerField`` ``IntegerField`` ``IPAddressField`` ``IPAddressField`` ``ManyToManyField`` ``ModelMultipleChoiceField`` (see below) ``NullBooleanField`` ``CharField`` ``PhoneNumberField`` ``USPhoneNumberField`` (from ``django.contrib.localflavor.us``) ``PositiveIntegerField`` ``IntegerField`` ``PositiveSmallIntegerField`` ``IntegerField`` ``SlugField`` ``CharField`` ``SmallIntegerField`` ``IntegerField`` ``TextField`` ``CharField`` with ``widget=Textarea`` ``TimeField`` ``TimeField`` ``URLField`` ``URLField`` with ``verify_exists`` set to the model field's ``verify_exists`` ``USStateField`` ``CharField`` with ``widget=USStateSelect`` (``USStateSelect`` is from ``django.contrib.localflavor.us``) ``XMLField`` ``CharField`` with ``widget=Textarea`` =============================== ======================================== .. note:: The ``FloatField`` form field and ``DecimalField`` model and form fields are new in the development version. As you might expect, the ``ForeignKey`` and ``ManyToManyField`` model field types are special cases: * ``ForeignKey`` is represented by ``django.newforms.ModelChoiceField``, which is a ``ChoiceField`` whose choices are a model ``QuerySet``. * ``ManyToManyField`` is represented by ``django.newforms.ModelMultipleChoiceField``, which is a ``MultipleChoiceField`` whose choices are a model ``QuerySet``. In addition, each generated form field has attributes set as follows: * If the model field has ``blank=True``, then ``required`` is set to ``False`` on the form field. Otherwise, ``required=True``. * The form field's ``label`` is set to the ``verbose_name`` of the model field, with the first character capitalized. * The form field's ``help_text`` is set to the ``help_text`` of the model field. * If the model field has ``choices`` set, then the form field's ``widget`` will be set to ``Select``, with choices coming from the model field's ``choices``. The choices will normally include the blank choice which is selected by default. If the field is required, this forces the user to make a selection. The blank choice will not be included if the model field has ``blank=False`` and an explicit ``default`` value (the ``default`` value will be initially selected instead). Finally, note that you can override the form field used for a given model field. See `Overriding the default field types`_ below. A full example -------------- Consider this set of models:: from django.db import models TITLE_CHOICES = ( ('MR', 'Mr.'), ('MRS', 'Mrs.'), ('MS', 'Ms.'), ) class Author(models.Model): name = models.CharField(max_length=100) title = models.CharField(max_length=3, choices=TITLE_CHOICES) birth_date = models.DateField(blank=True, null=True) def __unicode__(self): return self.name class Book(models.Model): name = models.CharField(max_length=100) authors = models.ManyToManyField(Author) class AuthorForm(ModelForm): class Meta: model = Author class BookForm(ModelForm): class Meta: model = Book With these models, the ``ModelForm`` subclasses above would be roughly equivalent to this (the only difference being the ``save()`` method, which we'll discuss in a moment.):: class AuthorForm(forms.Form): name = forms.CharField(max_length=100) title = forms.CharField(max_length=3, widget=forms.Select(choices=TITLE_CHOICES)) birth_date = forms.DateField(required=False) class BookForm(forms.Form): name = forms.CharField(max_length=100) authors = forms.ModelMultipleChoiceField(queryset=Author.objects.all()) The ``save()`` method --------------------- Every form produced by ``ModelForm`` also has a ``save()`` method. This method creates and saves a database object from the data bound to the form. A subclass of ``ModelForm`` can accept an existing model instance as the keyword argument ``instance``; if this is supplied, ``save()`` will update that instance. If it's not supplied, ``save()`` will create a new instance of the specified model:: # Create a form instance from POST data. >>> f = ArticleForm(request.POST) # Save a new Article object from the form's data. >>> new_article = f.save() # Create a form to edit an existing Article. >>> a = Article.objects.get(pk=1) >>> f = ArticleForm(instance=a) Note that ``save()`` will raise a ``ValueError`` if the data in the form doesn't validate -- i.e., ``if form.errors``. This ``save()`` method accepts an optional ``commit`` keyword argument, which accepts either ``True`` or ``False``. If you call ``save()`` with ``commit=False``, then it will return an object that hasn't yet been saved to the database. In this case, it's up to you to call ``save()`` on the resulting model instance. This is useful if you want to do custom processing on the object before saving it. ``commit`` is ``True`` by default. Another side effect of using ``commit=False`` is seen when your model has a many-to-many relation with another model. If your model has a many-to-many relation and you specify ``commit=False`` when you save a form, Django cannot immediately save the form data for the many-to-many relation. This is because it isn't possible to save many-to-many data for an instance until the instance exists in the database. To work around this problem, every time you save a form using ``commit=False``, Django adds a ``save_m2m()`` method to your ``ModelForm`` subclass. After you've manually saved the instance produced by the form, you can invoke ``save_m2m()`` to save the many-to-many form data. For example:: # Create a form instance with POST data. >>> f = AuthorForm(request.POST) # Create, but don't save the new author instance. >>> new_author = f.save(commit=False) # Modify the author in some way. >>> new_author.some_field = 'some_value' # Save the new instance. >>> new_author.save() # Now, save the many-to-many data for the form. >>> f.save_m2m() Calling ``save_m2m()`` is only required if you use ``save(commit=False)``. When you use a simple ``save()`` on a form, all data -- including many-to-many data -- is saved without the need for any additional method calls. For example:: # Create a form instance with POST data. >>> a = Author() >>> f = AuthorForm(a, request.POST) # Create and save the new author instance. There's no need to do anything else. >>> new_author = f.save() Using a subset of fields on the form ------------------------------------ In some cases, you may not want all the model fields to appear on the generated form. There are three ways of telling ``ModelForm`` to use only a subset of the model fields: 1. Set ``editable=False`` on the model field. As a result, *any* form created from the model via ``ModelForm`` will not include that field. 2. Use the ``fields`` attribute of the ``ModelForm``'s inner ``Meta`` class. This attribute, if given, should be a list of field names to include in the form. 3. Use the ``exclude`` attribute of the ``ModelForm``'s inner ``Meta`` class. This attribute, if given, should be a list of field names to exclude the form. For example, if you want a form for the ``Author`` model (defined above) that includes only the ``name`` and ``title`` fields, you would specify ``fields`` or ``exclude`` like this:: class PartialAuthorForm(ModelForm): class Meta: model = Author fields = ('name', 'title') class PartialAuthorForm(ModelForm): class Meta: model = Author exclude = ('birth_date',) Since the Author model has only 3 fields, 'name', 'title', and 'birth_date', the forms above will contain exactly the same fields. .. note:: If you specify ``fields`` or ``exclude`` when creating a form with ``ModelForm``, then the fields that are not in the resulting form will not be set by the form's ``save()`` method. Django will prevent any attempt to save an incomplete model, so if the model does not allow the missing fields to be empty, and does not provide a default value for the missing fields, any attempt to ``save()`` a ``ModelForm`` with missing fields will fail. To avoid this failure, you must instantiate your model with initial values for the missing, but required fields, or use ``save(commit=False)`` and manually set any extra required fields:: instance = Instance(required_field='value') form = InstanceForm(request.POST, instance=instance) new_instance = form.save() instance = form.save(commit=False) instance.required_field = 'new value' new_instance = instance.save() See the `section on saving forms`_ for more details on using ``save(commit=False)``. .. _section on saving forms: `The save() method`_ Overriding the default field types ---------------------------------- The default field types, as described in the `Field types`_ table above, are sensible defaults. If you have a ``DateField`` in your model, chances are you'd want that to be represented as a ``DateField`` in your form. But ``ModelForm`` gives you the flexibility of changing the form field type for a given model field. You do this by declaratively specifying fields like you would in a regular ``Form``. Declared fields will override the default ones generated by using the ``model`` attribute. For example, if you wanted to use ``MyDateFormField`` for the ``pub_date`` field, you could do the following:: >>> class ArticleForm(ModelForm): ... pub_date = MyDateFormField() ... ... class Meta: ... model = Article If you want to override a field's default widget, then specify the ``widget`` parameter when declaring the form field:: >>> class ArticleForm(ModelForm): ... pub_date = DateField(widget=MyDateWidget()) ... ... class Meta: ... model = Article Form inheritance ---------------- As with the basic forms, you can extend and reuse ``ModelForms`` by inheriting them. Normally, this will be useful if you need to declare some extra fields or extra methods on a parent class for use in a number of forms derived from models. For example, using the previous ``ArticleForm`` class:: >>> class EnhancedArticleForm(ArticleForm): ... def clean_pub_date(self): ... ... This creates a form that behaves identically to ``ArticleForm``, except there is some extra validation and cleaning for the ``pub_date`` field. You can also subclass the parent's ``Meta`` inner class if you want to change the ``Meta.fields`` or ``Meta.excludes`` lists:: >>> class RestrictedArticleForm(EnhancedArticleForm): ... class Meta(ArticleForm.Meta): ... exclude = ['body'] This adds in the extra method from the ``EnhancedArticleForm`` and modifies the original ``ArticleForm.Meta`` to remove one field. There are a couple of things to note, however. Most of these won't normally be of concern unless you are trying to do something tricky with subclassing. * Normal Python name resolution rules apply. If you have multiple base classes that declare a ``Meta`` inner class, only the first one will be used. This means the child's ``Meta``, if it exists, otherwise the ``Meta`` of the first parent, etc. * For technical reasons, you cannot have a subclass that is inherited from both a ``ModelForm`` and a ``Form`` simultaneously.