from __future__ import absolute_import from django.db import connection, connections, transaction, DEFAULT_DB_ALIAS, DatabaseError from django.db.transaction import commit_on_success, commit_manually, TransactionManagementError from django.test import TransactionTestCase, skipUnlessDBFeature from django.test.utils import override_settings from django.utils.unittest import skipIf, skipUnless, SkipTest from .models import Mod, M2mA, M2mB class TestTransactionClosing(TransactionTestCase): """ Tests to make sure that transactions are properly closed when they should be, and aren't left pending after operations have been performed in them. Refs #9964. """ def test_raw_committed_on_success(self): """ Make sure a transaction consisting of raw SQL execution gets committed by the commit_on_success decorator. """ @commit_on_success def raw_sql(): "Write a record using raw sql under a commit_on_success decorator" cursor = connection.cursor() cursor.execute("INSERT into transactions_regress_mod (fld) values (18)") raw_sql() # Rollback so that if the decorator didn't commit, the record is unwritten transaction.rollback() self.assertEqual(Mod.objects.count(), 1) # Check that the record is in the DB obj = Mod.objects.all()[0] self.assertEqual(obj.fld, 18) def test_commit_manually_enforced(self): """ Make sure that under commit_manually, even "read-only" transaction require closure (commit or rollback), and a transaction left pending is treated as an error. """ @commit_manually def non_comitter(): "Execute a managed transaction with read-only operations and fail to commit" _ = Mod.objects.count() self.assertRaises(TransactionManagementError, non_comitter) def test_commit_manually_commit_ok(self): """ Test that under commit_manually, a committed transaction is accepted by the transaction management mechanisms """ @commit_manually def committer(): """ Perform a database query, then commit the transaction """ _ = Mod.objects.count() transaction.commit() try: committer() except TransactionManagementError: self.fail("Commit did not clear the transaction state") def test_commit_manually_rollback_ok(self): """ Test that under commit_manually, a rolled-back transaction is accepted by the transaction management mechanisms """ @commit_manually def roller_back(): """ Perform a database query, then rollback the transaction """ _ = Mod.objects.count() transaction.rollback() try: roller_back() except TransactionManagementError: self.fail("Rollback did not clear the transaction state") def test_commit_manually_enforced_after_commit(self): """ Test that under commit_manually, if a transaction is committed and an operation is performed later, we still require the new transaction to be closed """ @commit_manually def fake_committer(): "Query, commit, then query again, leaving with a pending transaction" _ = Mod.objects.count() transaction.commit() _ = Mod.objects.count() self.assertRaises(TransactionManagementError, fake_committer) @skipUnlessDBFeature('supports_transactions') def test_reuse_cursor_reference(self): """ Make sure transaction closure is enforced even when the queries are performed through a single cursor reference retrieved in the beginning (this is to show why it is wrong to set the transaction dirty only when a cursor is fetched from the connection). """ @commit_on_success def reuse_cursor_ref(): """ Fetch a cursor, perform an query, rollback to close the transaction, then write a record (in a new transaction) using the same cursor object (reference). All this under commit_on_success, so the second insert should be committed. """ cursor = connection.cursor() cursor.execute("INSERT into transactions_regress_mod (fld) values (2)") transaction.rollback() cursor.execute("INSERT into transactions_regress_mod (fld) values (2)") reuse_cursor_ref() # Rollback so that if the decorator didn't commit, the record is unwritten transaction.rollback() self.assertEqual(Mod.objects.count(), 1) obj = Mod.objects.all()[0] self.assertEqual(obj.fld, 2) def test_failing_query_transaction_closed(self): """ Make sure that under commit_on_success, a transaction is rolled back even if the first database-modifying operation fails. This is prompted by http://code.djangoproject.com/ticket/6669 (and based on sample code posted there to exemplify the problem): Before Django 1.3, transactions were only marked "dirty" by the save() function after it successfully wrote the object to the database. """ from django.contrib.auth.models import User @transaction.commit_on_success def create_system_user(): "Create a user in a transaction" user = User.objects.create_user(username='system', password='iamr00t', email='root@SITENAME.com') # Redundant, just makes sure the user id was read back from DB Mod.objects.create(fld=user.pk) # Create a user create_system_user() with self.assertRaises(DatabaseError): # The second call to create_system_user should fail for violating # a unique constraint (it's trying to re-create the same user) create_system_user() # Try to read the database. If the last transaction was indeed closed, # this should cause no problems User.objects.all()[0] @override_settings(DEBUG=True) def test_failing_query_transaction_closed_debug(self): """ Regression for #6669. Same test as above, with DEBUG=True. """ self.test_failing_query_transaction_closed() @skipUnless(connection.vendor == 'postgresql', "This test only valid for PostgreSQL") class TestPostgresAutocommit(TransactionTestCase): """ Tests to make sure psycopg2's autocommit mode is restored after entering and leaving transaction management. Refs #16047. """ def setUp(self): from psycopg2.extensions import (ISOLATION_LEVEL_AUTOCOMMIT, ISOLATION_LEVEL_READ_COMMITTED) self._autocommit = ISOLATION_LEVEL_AUTOCOMMIT self._read_committed = ISOLATION_LEVEL_READ_COMMITTED # We want a clean backend with autocommit = True, so # first we need to do a bit of work to have that. self._old_backend = connections[DEFAULT_DB_ALIAS] settings = self._old_backend.settings_dict.copy() opts = settings['OPTIONS'].copy() opts['autocommit'] = True settings['OPTIONS'] = opts new_backend = self._old_backend.__class__(settings, DEFAULT_DB_ALIAS) connections[DEFAULT_DB_ALIAS] = new_backend def tearDown(self): connections[DEFAULT_DB_ALIAS] = self._old_backend def test_initial_autocommit_state(self): self.assertTrue(connection.features.uses_autocommit) self.assertEqual(connection.isolation_level, self._autocommit) def test_transaction_management(self): transaction.enter_transaction_management() transaction.managed(True) self.assertEqual(connection.isolation_level, self._read_committed) transaction.leave_transaction_management() self.assertEqual(connection.isolation_level, self._autocommit) def test_transaction_stacking(self): transaction.enter_transaction_management() transaction.managed(True) self.assertEqual(connection.isolation_level, self._read_committed) transaction.enter_transaction_management() self.assertEqual(connection.isolation_level, self._read_committed) transaction.leave_transaction_management() self.assertEqual(connection.isolation_level, self._read_committed) transaction.leave_transaction_management() self.assertEqual(connection.isolation_level, self._autocommit) class TestManyToManyAddTransaction(TransactionTestCase): def test_manyrelated_add_commit(self): "Test for https://code.djangoproject.com/ticket/16818" a = M2mA.objects.create() b = M2mB.objects.create(fld=10) a.others.add(b) # We're in a TransactionTestCase and have not changed transaction # behavior from default of "autocommit", so this rollback should not # actually do anything. If it does in fact undo our add, that's a bug # that the bulk insert was not auto-committed. transaction.rollback() self.assertEqual(a.others.count(), 1) class SavepointTest(TransactionTestCase): @skipUnlessDBFeature('uses_savepoints') def test_savepoint_commit(self): @commit_manually def work(): mod = Mod.objects.create(fld=1) pk = mod.pk sid = transaction.savepoint() mod1 = Mod.objects.filter(pk=pk).update(fld=10) transaction.savepoint_commit(sid) mod2 = Mod.objects.get(pk=pk) transaction.commit() self.assertEqual(mod2.fld, 10) work() @skipUnlessDBFeature('uses_savepoints') def test_savepoint_rollback(self): # _mysql_storage_engine issues a query and as such can't be applied in # a skipIf decorator since that would execute the query on module load. if (connection.vendor == 'mysql' and connection.features._mysql_storage_engine == 'MyISAM'): raise SkipTest("MyISAM MySQL storage engine doesn't support savepoints") @commit_manually def work(): mod = Mod.objects.create(fld=1) pk = mod.pk sid = transaction.savepoint() mod1 = Mod.objects.filter(pk=pk).update(fld=20) transaction.savepoint_rollback(sid) mod2 = Mod.objects.get(pk=pk) transaction.commit() self.assertEqual(mod2.fld, 1) work()