from __future__ import unicode_literals import ctypes import json import random import unittest from binascii import a2b_hex, b2a_hex from io import BytesIO from unittest import skipUnless from django.contrib.gis.gdal import HAS_GDAL from django.contrib.gis.geos import HAS_GEOS from django.contrib.gis.shortcuts import numpy from django.utils import six from django.utils.encoding import force_bytes from django.utils.six.moves import range from ..test_data import TestDataMixin if HAS_GEOS: from django.contrib.gis.geos import ( GEOSException, GEOSIndexError, GEOSGeometry, GeometryCollection, Point, MultiPoint, Polygon, MultiPolygon, LinearRing, LineString, MultiLineString, fromfile, fromstr, geos_version_info, ) from django.contrib.gis.geos.base import gdal, GEOSBase @skipUnless(HAS_GEOS, "Geos is required.") class GEOSTest(unittest.TestCase, TestDataMixin): def test_base(self): "Tests out the GEOSBase class." # Testing out GEOSBase class, which provides a `ptr` property # that abstracts out access to underlying C pointers. class FakeGeom1(GEOSBase): pass # This one only accepts pointers to floats c_float_p = ctypes.POINTER(ctypes.c_float) class FakeGeom2(GEOSBase): ptr_type = c_float_p # Default ptr_type is `c_void_p`. fg1 = FakeGeom1() # Default ptr_type is C float pointer fg2 = FakeGeom2() # These assignments are OK -- None is allowed because # it's equivalent to the NULL pointer. fg1.ptr = ctypes.c_void_p() fg1.ptr = None fg2.ptr = c_float_p(ctypes.c_float(5.23)) fg2.ptr = None # Because pointers have been set to NULL, an exception should be # raised when we try to access it. Raising an exception is # preferable to a segmentation fault that commonly occurs when # a C method is given a NULL memory reference. for fg in (fg1, fg2): # Equivalent to `fg.ptr` self.assertRaises(GEOSException, fg._get_ptr) # Anything that is either not None or the acceptable pointer type will # result in a TypeError when trying to assign it to the `ptr` property. # Thus, memory addresses (integers) and pointers of the incorrect type # (in `bad_ptrs`) will not be allowed. bad_ptrs = (5, ctypes.c_char_p(b'foobar')) for bad_ptr in bad_ptrs: # Equivalent to `fg.ptr = bad_ptr` self.assertRaises(TypeError, fg1._set_ptr, bad_ptr) self.assertRaises(TypeError, fg2._set_ptr, bad_ptr) def test_wkt(self): "Testing WKT output." for g in self.geometries.wkt_out: geom = fromstr(g.wkt) if geom.hasz and geos_version_info()['version'] >= '3.3.0': self.assertEqual(g.ewkt, geom.wkt) def test_hex(self): "Testing HEX output." for g in self.geometries.hex_wkt: geom = fromstr(g.wkt) self.assertEqual(g.hex, geom.hex.decode()) def test_hexewkb(self): "Testing (HEX)EWKB output." # For testing HEX(EWKB). ogc_hex = b'01010000000000000000000000000000000000F03F' ogc_hex_3d = b'01010000800000000000000000000000000000F03F0000000000000040' # `SELECT ST_AsHEXEWKB(ST_GeomFromText('POINT(0 1)', 4326));` hexewkb_2d = b'0101000020E61000000000000000000000000000000000F03F' # `SELECT ST_AsHEXEWKB(ST_GeomFromEWKT('SRID=4326;POINT(0 1 2)'));` hexewkb_3d = b'01010000A0E61000000000000000000000000000000000F03F0000000000000040' pnt_2d = Point(0, 1, srid=4326) pnt_3d = Point(0, 1, 2, srid=4326) # OGC-compliant HEX will not have SRID value. self.assertEqual(ogc_hex, pnt_2d.hex) self.assertEqual(ogc_hex_3d, pnt_3d.hex) # HEXEWKB should be appropriate for its dimension -- have to use an # a WKBWriter w/dimension set accordingly, else GEOS will insert # garbage into 3D coordinate if there is none. self.assertEqual(hexewkb_2d, pnt_2d.hexewkb) self.assertEqual(hexewkb_3d, pnt_3d.hexewkb) self.assertEqual(True, GEOSGeometry(hexewkb_3d).hasz) # Same for EWKB. self.assertEqual(six.memoryview(a2b_hex(hexewkb_2d)), pnt_2d.ewkb) self.assertEqual(six.memoryview(a2b_hex(hexewkb_3d)), pnt_3d.ewkb) # Redundant sanity check. self.assertEqual(4326, GEOSGeometry(hexewkb_2d).srid) def test_kml(self): "Testing KML output." for tg in self.geometries.wkt_out: geom = fromstr(tg.wkt) kml = getattr(tg, 'kml', False) if kml: self.assertEqual(kml, geom.kml) def test_errors(self): "Testing the Error handlers." # string-based for err in self.geometries.errors: with self.assertRaises((GEOSException, ValueError)): fromstr(err.wkt) # Bad WKB self.assertRaises(GEOSException, GEOSGeometry, six.memoryview(b'0')) class NotAGeometry(object): pass # Some other object self.assertRaises(TypeError, GEOSGeometry, NotAGeometry()) # None self.assertRaises(TypeError, GEOSGeometry, None) def test_wkb(self): "Testing WKB output." for g in self.geometries.hex_wkt: geom = fromstr(g.wkt) wkb = geom.wkb self.assertEqual(b2a_hex(wkb).decode().upper(), g.hex) def test_create_hex(self): "Testing creation from HEX." for g in self.geometries.hex_wkt: geom_h = GEOSGeometry(g.hex) # we need to do this so decimal places get normalized geom_t = fromstr(g.wkt) self.assertEqual(geom_t.wkt, geom_h.wkt) def test_create_wkb(self): "Testing creation from WKB." for g in self.geometries.hex_wkt: wkb = six.memoryview(a2b_hex(g.hex.encode())) geom_h = GEOSGeometry(wkb) # we need to do this so decimal places get normalized geom_t = fromstr(g.wkt) self.assertEqual(geom_t.wkt, geom_h.wkt) def test_ewkt(self): "Testing EWKT." srids = (-1, 32140) for srid in srids: for p in self.geometries.polygons: ewkt = 'SRID=%d;%s' % (srid, p.wkt) poly = fromstr(ewkt) self.assertEqual(srid, poly.srid) self.assertEqual(srid, poly.shell.srid) self.assertEqual(srid, fromstr(poly.ewkt).srid) # Checking export @skipUnless(HAS_GDAL, "GDAL is required.") def test_json(self): "Testing GeoJSON input/output (via GDAL)." for g in self.geometries.json_geoms: geom = GEOSGeometry(g.wkt) if not hasattr(g, 'not_equal'): # Loading jsons to prevent decimal differences self.assertEqual(json.loads(g.json), json.loads(geom.json)) self.assertEqual(json.loads(g.json), json.loads(geom.geojson)) self.assertEqual(GEOSGeometry(g.wkt), GEOSGeometry(geom.json)) def test_fromfile(self): "Testing the fromfile() factory." ref_pnt = GEOSGeometry('POINT(5 23)') wkt_f = BytesIO() wkt_f.write(force_bytes(ref_pnt.wkt)) wkb_f = BytesIO() wkb_f.write(bytes(ref_pnt.wkb)) # Other tests use `fromfile()` on string filenames so those # aren't tested here. for fh in (wkt_f, wkb_f): fh.seek(0) pnt = fromfile(fh) self.assertEqual(ref_pnt, pnt) def test_eq(self): "Testing equivalence." p = fromstr('POINT(5 23)') self.assertEqual(p, p.wkt) self.assertNotEqual(p, 'foo') ls = fromstr('LINESTRING(0 0, 1 1, 5 5)') self.assertEqual(ls, ls.wkt) self.assertNotEqual(p, 'bar') # Error shouldn't be raise on equivalence testing with # an invalid type. for g in (p, ls): self.assertNotEqual(g, None) self.assertNotEqual(g, {'foo': 'bar'}) self.assertNotEqual(g, False) def test_points(self): "Testing Point objects." prev = fromstr('POINT(0 0)') for p in self.geometries.points: # Creating the point from the WKT pnt = fromstr(p.wkt) self.assertEqual(pnt.geom_type, 'Point') self.assertEqual(pnt.geom_typeid, 0) self.assertEqual(p.x, pnt.x) self.assertEqual(p.y, pnt.y) self.assertEqual(True, pnt == fromstr(p.wkt)) self.assertEqual(False, pnt == prev) # Making sure that the point's X, Y components are what we expect self.assertAlmostEqual(p.x, pnt.tuple[0], 9) self.assertAlmostEqual(p.y, pnt.tuple[1], 9) # Testing the third dimension, and getting the tuple arguments if hasattr(p, 'z'): self.assertEqual(True, pnt.hasz) self.assertEqual(p.z, pnt.z) self.assertEqual(p.z, pnt.tuple[2], 9) tup_args = (p.x, p.y, p.z) set_tup1 = (2.71, 3.14, 5.23) set_tup2 = (5.23, 2.71, 3.14) else: self.assertEqual(False, pnt.hasz) self.assertEqual(None, pnt.z) tup_args = (p.x, p.y) set_tup1 = (2.71, 3.14) set_tup2 = (3.14, 2.71) # Centroid operation on point should be point itself self.assertEqual(p.centroid, pnt.centroid.tuple) # Now testing the different constructors pnt2 = Point(tup_args) # e.g., Point((1, 2)) pnt3 = Point(*tup_args) # e.g., Point(1, 2) self.assertEqual(True, pnt == pnt2) self.assertEqual(True, pnt == pnt3) # Now testing setting the x and y pnt.y = 3.14 pnt.x = 2.71 self.assertEqual(3.14, pnt.y) self.assertEqual(2.71, pnt.x) # Setting via the tuple/coords property pnt.tuple = set_tup1 self.assertEqual(set_tup1, pnt.tuple) pnt.coords = set_tup2 self.assertEqual(set_tup2, pnt.coords) prev = pnt # setting the previous geometry def test_multipoints(self): "Testing MultiPoint objects." for mp in self.geometries.multipoints: mpnt = fromstr(mp.wkt) self.assertEqual(mpnt.geom_type, 'MultiPoint') self.assertEqual(mpnt.geom_typeid, 4) self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9) self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9) self.assertRaises(GEOSIndexError, mpnt.__getitem__, len(mpnt)) self.assertEqual(mp.centroid, mpnt.centroid.tuple) self.assertEqual(mp.coords, tuple(m.tuple for m in mpnt)) for p in mpnt: self.assertEqual(p.geom_type, 'Point') self.assertEqual(p.geom_typeid, 0) self.assertEqual(p.empty, False) self.assertEqual(p.valid, True) def test_linestring(self): "Testing LineString objects." prev = fromstr('POINT(0 0)') for l in self.geometries.linestrings: ls = fromstr(l.wkt) self.assertEqual(ls.geom_type, 'LineString') self.assertEqual(ls.geom_typeid, 1) self.assertEqual(ls.empty, False) self.assertEqual(ls.ring, False) if hasattr(l, 'centroid'): self.assertEqual(l.centroid, ls.centroid.tuple) if hasattr(l, 'tup'): self.assertEqual(l.tup, ls.tuple) self.assertEqual(True, ls == fromstr(l.wkt)) self.assertEqual(False, ls == prev) self.assertRaises(GEOSIndexError, ls.__getitem__, len(ls)) prev = ls # Creating a LineString from a tuple, list, and numpy array self.assertEqual(ls, LineString(ls.tuple)) # tuple self.assertEqual(ls, LineString(*ls.tuple)) # as individual arguments self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple])) # as list # Point individual arguments self.assertEqual(ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt) if numpy: self.assertEqual(ls, LineString(numpy.array(ls.tuple))) # as numpy array def test_multilinestring(self): "Testing MultiLineString objects." prev = fromstr('POINT(0 0)') for l in self.geometries.multilinestrings: ml = fromstr(l.wkt) self.assertEqual(ml.geom_type, 'MultiLineString') self.assertEqual(ml.geom_typeid, 5) self.assertAlmostEqual(l.centroid[0], ml.centroid.x, 9) self.assertAlmostEqual(l.centroid[1], ml.centroid.y, 9) self.assertEqual(True, ml == fromstr(l.wkt)) self.assertEqual(False, ml == prev) prev = ml for ls in ml: self.assertEqual(ls.geom_type, 'LineString') self.assertEqual(ls.geom_typeid, 1) self.assertEqual(ls.empty, False) self.assertRaises(GEOSIndexError, ml.__getitem__, len(ml)) self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt) self.assertEqual(ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml))) def test_linearring(self): "Testing LinearRing objects." for rr in self.geometries.linearrings: lr = fromstr(rr.wkt) self.assertEqual(lr.geom_type, 'LinearRing') self.assertEqual(lr.geom_typeid, 2) self.assertEqual(rr.n_p, len(lr)) self.assertEqual(True, lr.valid) self.assertEqual(False, lr.empty) # Creating a LinearRing from a tuple, list, and numpy array self.assertEqual(lr, LinearRing(lr.tuple)) self.assertEqual(lr, LinearRing(*lr.tuple)) self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple])) if numpy: self.assertEqual(lr, LinearRing(numpy.array(lr.tuple))) def test_polygons_from_bbox(self): "Testing `from_bbox` class method." bbox = (-180, -90, 180, 90) p = Polygon.from_bbox(bbox) self.assertEqual(bbox, p.extent) # Testing numerical precision x = 3.14159265358979323 bbox = (0, 0, 1, x) p = Polygon.from_bbox(bbox) y = p.extent[-1] self.assertEqual(format(x, '.13f'), format(y, '.13f')) def test_polygons(self): "Testing Polygon objects." prev = fromstr('POINT(0 0)') for p in self.geometries.polygons: # Creating the Polygon, testing its properties. poly = fromstr(p.wkt) self.assertEqual(poly.geom_type, 'Polygon') self.assertEqual(poly.geom_typeid, 3) self.assertEqual(poly.empty, False) self.assertEqual(poly.ring, False) self.assertEqual(p.n_i, poly.num_interior_rings) self.assertEqual(p.n_i + 1, len(poly)) # Testing __len__ self.assertEqual(p.n_p, poly.num_points) # Area & Centroid self.assertAlmostEqual(p.area, poly.area, 9) self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9) self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9) # Testing the geometry equivalence self.assertEqual(True, poly == fromstr(p.wkt)) self.assertEqual(False, poly == prev) # Should not be equal to previous geometry self.assertEqual(True, poly != prev) # Testing the exterior ring ring = poly.exterior_ring self.assertEqual(ring.geom_type, 'LinearRing') self.assertEqual(ring.geom_typeid, 2) if p.ext_ring_cs: self.assertEqual(p.ext_ring_cs, ring.tuple) self.assertEqual(p.ext_ring_cs, poly[0].tuple) # Testing __getitem__ # Testing __getitem__ and __setitem__ on invalid indices self.assertRaises(GEOSIndexError, poly.__getitem__, len(poly)) self.assertRaises(GEOSIndexError, poly.__setitem__, len(poly), False) self.assertRaises(GEOSIndexError, poly.__getitem__, -1 * len(poly) - 1) # Testing __iter__ for r in poly: self.assertEqual(r.geom_type, 'LinearRing') self.assertEqual(r.geom_typeid, 2) # Testing polygon construction. self.assertRaises(TypeError, Polygon, 0, [1, 2, 3]) self.assertRaises(TypeError, Polygon, 'foo') # Polygon(shell, (hole1, ... holeN)) rings = tuple(r for r in poly) self.assertEqual(poly, Polygon(rings[0], rings[1:])) # Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN) ring_tuples = tuple(r.tuple for r in poly) self.assertEqual(poly, Polygon(*ring_tuples)) # Constructing with tuples of LinearRings. self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt) self.assertEqual(poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt) def test_polygon_comparison(self): p1 = Polygon(((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))) p2 = Polygon(((0, 0), (0, 1), (1, 0), (0, 0))) self.assertGreater(p1, p2) self.assertLess(p2, p1) p3 = Polygon(((0, 0), (0, 1), (1, 1), (2, 0), (0, 0))) p4 = Polygon(((0, 0), (0, 1), (2, 2), (1, 0), (0, 0))) self.assertGreater(p4, p3) self.assertLess(p3, p4) def test_multipolygons(self): "Testing MultiPolygon objects." fromstr('POINT (0 0)') for mp in self.geometries.multipolygons: mpoly = fromstr(mp.wkt) self.assertEqual(mpoly.geom_type, 'MultiPolygon') self.assertEqual(mpoly.geom_typeid, 6) self.assertEqual(mp.valid, mpoly.valid) if mp.valid: self.assertEqual(mp.num_geom, mpoly.num_geom) self.assertEqual(mp.n_p, mpoly.num_coords) self.assertEqual(mp.num_geom, len(mpoly)) self.assertRaises(GEOSIndexError, mpoly.__getitem__, len(mpoly)) for p in mpoly: self.assertEqual(p.geom_type, 'Polygon') self.assertEqual(p.geom_typeid, 3) self.assertEqual(p.valid, True) self.assertEqual(mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt) def test_memory_hijinks(self): "Testing Geometry __del__() on rings and polygons." # #### Memory issues with rings and poly # These tests are needed to ensure sanity with writable geometries. # Getting a polygon with interior rings, and pulling out the interior rings poly = fromstr(self.geometries.polygons[1].wkt) ring1 = poly[0] ring2 = poly[1] # These deletes should be 'harmless' since they are done on child geometries del ring1 del ring2 ring1 = poly[0] ring2 = poly[1] # Deleting the polygon del poly # Access to these rings is OK since they are clones. str(ring1) str(ring2) def test_coord_seq(self): "Testing Coordinate Sequence objects." for p in self.geometries.polygons: if p.ext_ring_cs: # Constructing the polygon and getting the coordinate sequence poly = fromstr(p.wkt) cs = poly.exterior_ring.coord_seq self.assertEqual(p.ext_ring_cs, cs.tuple) # done in the Polygon test too. self.assertEqual(len(p.ext_ring_cs), len(cs)) # Making sure __len__ works # Checks __getitem__ and __setitem__ for i in range(len(p.ext_ring_cs)): c1 = p.ext_ring_cs[i] # Expected value c2 = cs[i] # Value from coordseq self.assertEqual(c1, c2) # Constructing the test value to set the coordinate sequence with if len(c1) == 2: tset = (5, 23) else: tset = (5, 23, 8) cs[i] = tset # Making sure every set point matches what we expect for j in range(len(tset)): cs[i] = tset self.assertEqual(tset[j], cs[i][j]) def test_relate_pattern(self): "Testing relate() and relate_pattern()." g = fromstr('POINT (0 0)') self.assertRaises(GEOSException, g.relate_pattern, 0, 'invalid pattern, yo') for rg in self.geometries.relate_geoms: a = fromstr(rg.wkt_a) b = fromstr(rg.wkt_b) self.assertEqual(rg.result, a.relate_pattern(b, rg.pattern)) self.assertEqual(rg.pattern, a.relate(b)) def test_intersection(self): "Testing intersects() and intersection()." for i in range(len(self.geometries.topology_geoms)): a = fromstr(self.geometries.topology_geoms[i].wkt_a) b = fromstr(self.geometries.topology_geoms[i].wkt_b) i1 = fromstr(self.geometries.intersect_geoms[i].wkt) self.assertEqual(True, a.intersects(b)) i2 = a.intersection(b) self.assertEqual(i1, i2) self.assertEqual(i1, a & b) # __and__ is intersection operator a &= b # testing __iand__ self.assertEqual(i1, a) def test_union(self): "Testing union()." for i in range(len(self.geometries.topology_geoms)): a = fromstr(self.geometries.topology_geoms[i].wkt_a) b = fromstr(self.geometries.topology_geoms[i].wkt_b) u1 = fromstr(self.geometries.union_geoms[i].wkt) u2 = a.union(b) self.assertEqual(u1, u2) self.assertEqual(u1, a | b) # __or__ is union operator a |= b # testing __ior__ self.assertEqual(u1, a) def test_difference(self): "Testing difference()." for i in range(len(self.geometries.topology_geoms)): a = fromstr(self.geometries.topology_geoms[i].wkt_a) b = fromstr(self.geometries.topology_geoms[i].wkt_b) d1 = fromstr(self.geometries.diff_geoms[i].wkt) d2 = a.difference(b) self.assertEqual(d1, d2) self.assertEqual(d1, a - b) # __sub__ is difference operator a -= b # testing __isub__ self.assertEqual(d1, a) def test_symdifference(self): "Testing sym_difference()." for i in range(len(self.geometries.topology_geoms)): a = fromstr(self.geometries.topology_geoms[i].wkt_a) b = fromstr(self.geometries.topology_geoms[i].wkt_b) d1 = fromstr(self.geometries.sdiff_geoms[i].wkt) d2 = a.sym_difference(b) self.assertEqual(d1, d2) self.assertEqual(d1, a ^ b) # __xor__ is symmetric difference operator a ^= b # testing __ixor__ self.assertEqual(d1, a) def test_buffer(self): "Testing buffer()." for bg in self.geometries.buffer_geoms: g = fromstr(bg.wkt) # The buffer we expect exp_buf = fromstr(bg.buffer_wkt) quadsegs = bg.quadsegs width = bg.width # Can't use a floating-point for the number of quadsegs. self.assertRaises(ctypes.ArgumentError, g.buffer, width, float(quadsegs)) # Constructing our buffer buf = g.buffer(width, quadsegs) self.assertEqual(exp_buf.num_coords, buf.num_coords) self.assertEqual(len(exp_buf), len(buf)) # Now assuring that each point in the buffer is almost equal for j in range(len(exp_buf)): exp_ring = exp_buf[j] buf_ring = buf[j] self.assertEqual(len(exp_ring), len(buf_ring)) for k in range(len(exp_ring)): # Asserting the X, Y of each point are almost equal (due to floating point imprecision) self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9) self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9) def test_srid(self): "Testing the SRID property and keyword." # Testing SRID keyword on Point pnt = Point(5, 23, srid=4326) self.assertEqual(4326, pnt.srid) pnt.srid = 3084 self.assertEqual(3084, pnt.srid) self.assertRaises(ctypes.ArgumentError, pnt.set_srid, '4326') # Testing SRID keyword on fromstr(), and on Polygon rings. poly = fromstr(self.geometries.polygons[1].wkt, srid=4269) self.assertEqual(4269, poly.srid) for ring in poly: self.assertEqual(4269, ring.srid) poly.srid = 4326 self.assertEqual(4326, poly.shell.srid) # Testing SRID keyword on GeometryCollection gc = GeometryCollection(Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021) self.assertEqual(32021, gc.srid) for i in range(len(gc)): self.assertEqual(32021, gc[i].srid) # GEOS may get the SRID from HEXEWKB # 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS # using `SELECT GeomFromText('POINT (5 23)', 4326);`. hex = '0101000020E610000000000000000014400000000000003740' p1 = fromstr(hex) self.assertEqual(4326, p1.srid) p2 = fromstr(p1.hex) self.assertIsNone(p2.srid) p3 = fromstr(p1.hex, srid=-1) # -1 is intended. self.assertEqual(-1, p3.srid) @skipUnless(HAS_GDAL, "GDAL is required.") def test_custom_srid(self): """ Test with a srid unknown from GDAL """ pnt = Point(111200, 220900, srid=999999) self.assertTrue(pnt.ewkt.startswith("SRID=999999;POINT (111200.0")) self.assertIsInstance(pnt.ogr, gdal.OGRGeometry) self.assertIsNone(pnt.srs) # Test conversion from custom to a known srid c2w = gdal.CoordTransform( gdal.SpatialReference( '+proj=mill +lat_0=0 +lon_0=0 +x_0=0 +y_0=0 +R_A +ellps=WGS84 ' '+datum=WGS84 +units=m +no_defs' ), gdal.SpatialReference(4326)) new_pnt = pnt.transform(c2w, clone=True) self.assertEqual(new_pnt.srid, 4326) self.assertAlmostEqual(new_pnt.x, 1, 3) self.assertAlmostEqual(new_pnt.y, 2, 3) def test_mutable_geometries(self): "Testing the mutability of Polygons and Geometry Collections." # ### Testing the mutability of Polygons ### for p in self.geometries.polygons: poly = fromstr(p.wkt) # Should only be able to use __setitem__ with LinearRing geometries. self.assertRaises(TypeError, poly.__setitem__, 0, LineString((1, 1), (2, 2))) # Constructing the new shell by adding 500 to every point in the old shell. shell_tup = poly.shell.tuple new_coords = [] for point in shell_tup: new_coords.append((point[0] + 500., point[1] + 500.)) new_shell = LinearRing(*tuple(new_coords)) # Assigning polygon's exterior ring w/the new shell poly.exterior_ring = new_shell str(new_shell) # new shell is still accessible self.assertEqual(poly.exterior_ring, new_shell) self.assertEqual(poly[0], new_shell) # ### Testing the mutability of Geometry Collections for tg in self.geometries.multipoints: mp = fromstr(tg.wkt) for i in range(len(mp)): # Creating a random point. pnt = mp[i] new = Point(random.randint(21, 100), random.randint(21, 100)) # Testing the assignment mp[i] = new str(new) # what was used for the assignment is still accessible self.assertEqual(mp[i], new) self.assertEqual(mp[i].wkt, new.wkt) self.assertNotEqual(pnt, mp[i]) # MultiPolygons involve much more memory management because each # Polygon w/in the collection has its own rings. for tg in self.geometries.multipolygons: mpoly = fromstr(tg.wkt) for i in range(len(mpoly)): poly = mpoly[i] old_poly = mpoly[i] # Offsetting the each ring in the polygon by 500. for j in range(len(poly)): r = poly[j] for k in range(len(r)): r[k] = (r[k][0] + 500., r[k][1] + 500.) poly[j] = r self.assertNotEqual(mpoly[i], poly) # Testing the assignment mpoly[i] = poly str(poly) # Still accessible self.assertEqual(mpoly[i], poly) self.assertNotEqual(mpoly[i], old_poly) # Extreme (!!) __setitem__ -- no longer works, have to detect # in the first object that __setitem__ is called in the subsequent # objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)? # mpoly[0][0][0] = (3.14, 2.71) # self.assertEqual((3.14, 2.71), mpoly[0][0][0]) # Doing it more slowly.. # self.assertEqual((3.14, 2.71), mpoly[0].shell[0]) # del mpoly def test_threed(self): "Testing three-dimensional geometries." # Testing a 3D Point pnt = Point(2, 3, 8) self.assertEqual((2., 3., 8.), pnt.coords) self.assertRaises(TypeError, pnt.set_coords, (1., 2.)) pnt.coords = (1., 2., 3.) self.assertEqual((1., 2., 3.), pnt.coords) # Testing a 3D LineString ls = LineString((2., 3., 8.), (50., 250., -117.)) self.assertEqual(((2., 3., 8.), (50., 250., -117.)), ls.tuple) self.assertRaises(TypeError, ls.__setitem__, 0, (1., 2.)) ls[0] = (1., 2., 3.) self.assertEqual((1., 2., 3.), ls[0]) def test_distance(self): "Testing the distance() function." # Distance to self should be 0. pnt = Point(0, 0) self.assertEqual(0.0, pnt.distance(Point(0, 0))) # Distance should be 1 self.assertEqual(1.0, pnt.distance(Point(0, 1))) # Distance should be ~ sqrt(2) self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11) # Distances are from the closest vertex in each geometry -- # should be 3 (distance from (2, 2) to (5, 2)). ls1 = LineString((0, 0), (1, 1), (2, 2)) ls2 = LineString((5, 2), (6, 1), (7, 0)) self.assertEqual(3, ls1.distance(ls2)) def test_length(self): "Testing the length property." # Points have 0 length. pnt = Point(0, 0) self.assertEqual(0.0, pnt.length) # Should be ~ sqrt(2) ls = LineString((0, 0), (1, 1)) self.assertAlmostEqual(1.41421356237, ls.length, 11) # Should be circumference of Polygon poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))) self.assertEqual(4.0, poly.length) # Should be sum of each element's length in collection. mpoly = MultiPolygon(poly.clone(), poly) self.assertEqual(8.0, mpoly.length) def test_emptyCollections(self): "Testing empty geometries and collections." gc1 = GeometryCollection([]) gc2 = fromstr('GEOMETRYCOLLECTION EMPTY') pnt = fromstr('POINT EMPTY') ls = fromstr('LINESTRING EMPTY') poly = fromstr('POLYGON EMPTY') mls = fromstr('MULTILINESTRING EMPTY') mpoly1 = fromstr('MULTIPOLYGON EMPTY') mpoly2 = MultiPolygon(()) for g in [gc1, gc2, pnt, ls, poly, mls, mpoly1, mpoly2]: self.assertEqual(True, g.empty) # Testing len() and num_geom. if isinstance(g, Polygon): self.assertEqual(1, len(g)) # Has one empty linear ring self.assertEqual(1, g.num_geom) self.assertEqual(0, len(g[0])) elif isinstance(g, (Point, LineString)): self.assertEqual(1, g.num_geom) self.assertEqual(0, len(g)) else: self.assertEqual(0, g.num_geom) self.assertEqual(0, len(g)) # Testing __getitem__ (doesn't work on Point or Polygon) if isinstance(g, Point): self.assertRaises(GEOSIndexError, g.get_x) elif isinstance(g, Polygon): lr = g.shell self.assertEqual('LINEARRING EMPTY', lr.wkt) self.assertEqual(0, len(lr)) self.assertEqual(True, lr.empty) self.assertRaises(GEOSIndexError, lr.__getitem__, 0) else: self.assertRaises(GEOSIndexError, g.__getitem__, 0) def test_collections_of_collections(self): "Testing GeometryCollection handling of other collections." # Creating a GeometryCollection WKT string composed of other # collections and polygons. coll = [mp.wkt for mp in self.geometries.multipolygons if mp.valid] coll.extend(mls.wkt for mls in self.geometries.multilinestrings) coll.extend(p.wkt for p in self.geometries.polygons) coll.extend(mp.wkt for mp in self.geometries.multipoints) gc_wkt = 'GEOMETRYCOLLECTION(%s)' % ','.join(coll) # Should construct ok from WKT gc1 = GEOSGeometry(gc_wkt) # Should also construct ok from individual geometry arguments. gc2 = GeometryCollection(*tuple(g for g in gc1)) # And, they should be equal. self.assertEqual(gc1, gc2) @skipUnless(HAS_GDAL, "GDAL is required.") def test_gdal(self): "Testing `ogr` and `srs` properties." g1 = fromstr('POINT(5 23)') self.assertIsInstance(g1.ogr, gdal.OGRGeometry) self.assertIsNone(g1.srs) g1_3d = fromstr('POINT(5 23 8)') self.assertIsInstance(g1_3d.ogr, gdal.OGRGeometry) self.assertEqual(g1_3d.ogr.z, 8) g2 = fromstr('LINESTRING(0 0, 5 5, 23 23)', srid=4326) self.assertIsInstance(g2.ogr, gdal.OGRGeometry) self.assertIsInstance(g2.srs, gdal.SpatialReference) self.assertEqual(g2.hex, g2.ogr.hex) self.assertEqual('WGS 84', g2.srs.name) def test_copy(self): "Testing use with the Python `copy` module." import copy poly = GEOSGeometry('POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))') cpy1 = copy.copy(poly) cpy2 = copy.deepcopy(poly) self.assertNotEqual(poly._ptr, cpy1._ptr) self.assertNotEqual(poly._ptr, cpy2._ptr) @skipUnless(HAS_GDAL, "GDAL is required to transform geometries") def test_transform(self): "Testing `transform` method." orig = GEOSGeometry('POINT (-104.609 38.255)', 4326) trans = GEOSGeometry('POINT (992385.4472045 481455.4944650)', 2774) # Using a srid, a SpatialReference object, and a CoordTransform object # for transformations. t1, t2, t3 = orig.clone(), orig.clone(), orig.clone() t1.transform(trans.srid) t2.transform(gdal.SpatialReference('EPSG:2774')) ct = gdal.CoordTransform(gdal.SpatialReference('WGS84'), gdal.SpatialReference(2774)) t3.transform(ct) # Testing use of the `clone` keyword. k1 = orig.clone() k2 = k1.transform(trans.srid, clone=True) self.assertEqual(k1, orig) self.assertNotEqual(k1, k2) prec = 3 for p in (t1, t2, t3, k2): self.assertAlmostEqual(trans.x, p.x, prec) self.assertAlmostEqual(trans.y, p.y, prec) @skipUnless(HAS_GDAL, "GDAL is required to transform geometries") def test_transform_3d(self): p3d = GEOSGeometry('POINT (5 23 100)', 4326) p3d.transform(2774) self.assertEqual(p3d.z, 100) @skipUnless(HAS_GDAL, "GDAL is required.") def test_transform_noop(self): """ Testing `transform` method (SRID match) """ # transform() should no-op if source & dest SRIDs match, # regardless of whether GDAL is available. if gdal.HAS_GDAL: g = GEOSGeometry('POINT (-104.609 38.255)', 4326) gt = g.tuple g.transform(4326) self.assertEqual(g.tuple, gt) self.assertEqual(g.srid, 4326) g = GEOSGeometry('POINT (-104.609 38.255)', 4326) g1 = g.transform(4326, clone=True) self.assertEqual(g1.tuple, g.tuple) self.assertEqual(g1.srid, 4326) self.assertIsNot(g1, g, "Clone didn't happen") old_has_gdal = gdal.HAS_GDAL try: gdal.HAS_GDAL = False g = GEOSGeometry('POINT (-104.609 38.255)', 4326) gt = g.tuple g.transform(4326) self.assertEqual(g.tuple, gt) self.assertEqual(g.srid, 4326) g = GEOSGeometry('POINT (-104.609 38.255)', 4326) g1 = g.transform(4326, clone=True) self.assertEqual(g1.tuple, g.tuple) self.assertEqual(g1.srid, 4326) self.assertIsNot(g1, g, "Clone didn't happen") finally: gdal.HAS_GDAL = old_has_gdal def test_transform_nosrid(self): """ Testing `transform` method (no SRID or negative SRID) """ g = GEOSGeometry('POINT (-104.609 38.255)', srid=None) self.assertRaises(GEOSException, g.transform, 2774) g = GEOSGeometry('POINT (-104.609 38.255)', srid=None) self.assertRaises(GEOSException, g.transform, 2774, clone=True) g = GEOSGeometry('POINT (-104.609 38.255)', srid=-1) self.assertRaises(GEOSException, g.transform, 2774) g = GEOSGeometry('POINT (-104.609 38.255)', srid=-1) self.assertRaises(GEOSException, g.transform, 2774, clone=True) @skipUnless(HAS_GDAL, "GDAL is required.") def test_transform_nogdal(self): """ Testing `transform` method (GDAL not available) """ old_has_gdal = gdal.HAS_GDAL try: gdal.HAS_GDAL = False g = GEOSGeometry('POINT (-104.609 38.255)', 4326) self.assertRaises(GEOSException, g.transform, 2774) g = GEOSGeometry('POINT (-104.609 38.255)', 4326) self.assertRaises(GEOSException, g.transform, 2774, clone=True) finally: gdal.HAS_GDAL = old_has_gdal def test_extent(self): "Testing `extent` method." # The xmin, ymin, xmax, ymax of the MultiPoint should be returned. mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50)) self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent) pnt = Point(5.23, 17.8) # Extent of points is just the point itself repeated. self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent) # Testing on the 'real world' Polygon. poly = fromstr(self.geometries.polygons[3].wkt) ring = poly.shell x, y = ring.x, ring.y xmin, ymin = min(x), min(y) xmax, ymax = max(x), max(y) self.assertEqual((xmin, ymin, xmax, ymax), poly.extent) def test_pickle(self): "Testing pickling and unpickling support." # Using both pickle and cPickle -- just 'cause. from django.utils.six.moves import cPickle import pickle # Creating a list of test geometries for pickling, # and setting the SRID on some of them. def get_geoms(lst, srid=None): return [GEOSGeometry(tg.wkt, srid) for tg in lst] tgeoms = get_geoms(self.geometries.points) tgeoms.extend(get_geoms(self.geometries.multilinestrings, 4326)) tgeoms.extend(get_geoms(self.geometries.polygons, 3084)) tgeoms.extend(get_geoms(self.geometries.multipolygons, 3857)) for geom in tgeoms: s1, s2 = cPickle.dumps(geom), pickle.dumps(geom) g1, g2 = cPickle.loads(s1), pickle.loads(s2) for tmpg in (g1, g2): self.assertEqual(geom, tmpg) self.assertEqual(geom.srid, tmpg.srid) def test_prepared(self): "Testing PreparedGeometry support." # Creating a simple multipolygon and getting a prepared version. mpoly = GEOSGeometry('MULTIPOLYGON(((0 0,0 5,5 5,5 0,0 0)),((5 5,5 10,10 10,10 5,5 5)))') prep = mpoly.prepared # A set of test points. pnts = [Point(5, 5), Point(7.5, 7.5), Point(2.5, 7.5)] covers = [True, True, False] # No `covers` op for regular GEOS geoms. for pnt, c in zip(pnts, covers): # Results should be the same (but faster) self.assertEqual(mpoly.contains(pnt), prep.contains(pnt)) self.assertEqual(mpoly.intersects(pnt), prep.intersects(pnt)) self.assertEqual(c, prep.covers(pnt)) if geos_version_info()['version'] > '3.3.0': self.assertTrue(prep.crosses(fromstr('LINESTRING(1 1, 15 15)'))) self.assertTrue(prep.disjoint(Point(-5, -5))) poly = Polygon(((-1, -1), (1, 1), (1, 0), (-1, -1))) self.assertTrue(prep.overlaps(poly)) poly = Polygon(((-5, 0), (-5, 5), (0, 5), (-5, 0))) self.assertTrue(prep.touches(poly)) poly = Polygon(((-1, -1), (-1, 11), (11, 11), (11, -1), (-1, -1))) self.assertTrue(prep.within(poly)) # Original geometry deletion should not crash the prepared one (#21662) del mpoly self.assertTrue(prep.covers(Point(5, 5))) def test_line_merge(self): "Testing line merge support" ref_geoms = (fromstr('LINESTRING(1 1, 1 1, 3 3)'), fromstr('MULTILINESTRING((1 1, 3 3), (3 3, 4 2))'), ) ref_merged = (fromstr('LINESTRING(1 1, 3 3)'), fromstr('LINESTRING (1 1, 3 3, 4 2)'), ) for geom, merged in zip(ref_geoms, ref_merged): self.assertEqual(merged, geom.merged) def test_valid_reason(self): "Testing IsValidReason support" g = GEOSGeometry("POINT(0 0)") self.assertTrue(g.valid) self.assertIsInstance(g.valid_reason, six.string_types) self.assertEqual(g.valid_reason, "Valid Geometry") g = GEOSGeometry("LINESTRING(0 0, 0 0)") self.assertFalse(g.valid) self.assertIsInstance(g.valid_reason, six.string_types) self.assertTrue(g.valid_reason.startswith("Too few points in geometry component")) @skipUnless(HAS_GEOS, "Geos is required.") def test_linearref(self): "Testing linear referencing" ls = fromstr('LINESTRING(0 0, 0 10, 10 10, 10 0)') mls = fromstr('MULTILINESTRING((0 0, 0 10), (10 0, 10 10))') self.assertEqual(ls.project(Point(0, 20)), 10.0) self.assertEqual(ls.project(Point(7, 6)), 24) self.assertEqual(ls.project_normalized(Point(0, 20)), 1.0 / 3) self.assertEqual(ls.interpolate(10), Point(0, 10)) self.assertEqual(ls.interpolate(24), Point(10, 6)) self.assertEqual(ls.interpolate_normalized(1.0 / 3), Point(0, 10)) self.assertEqual(mls.project(Point(0, 20)), 10) self.assertEqual(mls.project(Point(7, 6)), 16) self.assertEqual(mls.interpolate(9), Point(0, 9)) self.assertEqual(mls.interpolate(17), Point(10, 7)) def test_geos_version(self): """Testing the GEOS version regular expression.""" from django.contrib.gis.geos.libgeos import version_regex versions = [('3.0.0rc4-CAPI-1.3.3', '3.0.0', '1.3.3'), ('3.0.0-CAPI-1.4.1', '3.0.0', '1.4.1'), ('3.4.0dev-CAPI-1.8.0', '3.4.0', '1.8.0'), ('3.4.0dev-CAPI-1.8.0 r0', '3.4.0', '1.8.0')] for v_init, v_geos, v_capi in versions: m = version_regex.match(v_init) self.assertTrue(m, msg="Unable to parse the version string '%s'" % v_init) self.assertEqual(m.group('version'), v_geos) self.assertEqual(m.group('capi_version'), v_capi)