test_ok2/doc/en/unittest.rst

191 lines
7.5 KiB
ReStructuredText
Raw Normal View History

2010-11-06 06:37:25 +08:00
.. _`unittest.TestCase`:
Support for unittest.TestCase / Integration of fixtures
=====================================================================
.. _`unittest.py style`: http://docs.python.org/library/unittest.html
``pytest`` has support for running Python `unittest.py style`_ tests.
It's meant for leveraging existing unittest-style projects
to use pytest features. Concretely, pytest will automatically
collect ``unittest.TestCase`` subclasses and their ``test`` methods in
2012-10-19 16:07:11 +08:00
test files. It will invoke typical setup/teardown methods and
generally try to make test suites written to run on unittest, to also
run using ``pytest``. We assume here that you are familiar with writing
``unittest.TestCase`` style tests and rather focus on
integration aspects.
Usage
-------------------------------------------------------------------
After :ref:`installation` type::
py.test
and you should be able to run your unittest-style tests if they
2012-10-19 16:07:11 +08:00
are contained in ``test_*`` modules. If that works for you then
you can make use of most :ref:`pytest features <features>`, for example
``--pdb`` debugging in failures, using :ref:`plain assert-statements <assert>`,
:ref:`more informative tracebacks <tbreportdemo>`, stdout-capturing or
distributing tests to multiple CPUs via the ``-nNUM`` option if you
installed the ``pytest-xdist`` plugin. Please refer to
the general ``pytest`` documentation for many more examples.
Mixing pytest fixtures into unittest.TestCase style tests
-----------------------------------------------------------
Running your unittest with ``pytest`` allows you to use its
2012-10-19 16:07:11 +08:00
:ref:`fixture mechanism <fixture>` with ``unittest.TestCase`` style
tests. Assuming you have at least skimmed the pytest fixture features,
let's jump-start into an example that integrates a pytest ``db_class``
fixture, setting up a class-cached database object, and then reference
it from a unittest-style test::
# content of conftest.py
2012-10-19 16:07:11 +08:00
# we define a fixture function below and it will be "used" by
# referencing its name from tests
import pytest
@pytest.fixture(scope="class")
def db_class(request):
class DummyDB:
pass
2012-10-19 16:07:11 +08:00
# set a class attribute on the invoking test context
request.cls.db = DummyDB()
This defines a fixture function ``db_class`` which - if used - is
called once for each test class and which sets the class-level
``db`` attribute to a ``DummyDB`` instance. The fixture function
achieves this by receiving a special ``request`` object which gives
access to :ref:`the requesting test context <request-context>` such
as the ``cls`` attribute, denoting the class from which the fixture
is used. This architecture de-couples fixture writing from actual test
code and allows re-use of the fixture by a minimal reference, the fixture
name. So let's write an actual ``unittest.TestCase`` class using our
fixture definition::
# content of test_unittest_db.py
import unittest
import pytest
@pytest.mark.usefixtures("db_class")
class MyTest(unittest.TestCase):
def test_method1(self):
assert hasattr(self, "db")
assert 0, self.db # fail for demo purposes
def test_method2(self):
assert 0, self.db # fail for demo purposes
The ``@pytest.mark.usefixtures("db_class")`` class-decorator makes sure that
2012-10-19 16:07:11 +08:00
the pytest fixture function ``db_class`` is called once per class.
2012-10-18 18:24:50 +08:00
Due to the deliberately failing assert statements, we can take a look at
the ``self.db`` values in the traceback::
$ py.test test_unittest_db.py
======= test session starts ========
platform linux -- Python 3.5.1, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: $REGENDOC_TMPDIR, inifile:
collected 2 items
test_unittest_db.py FF
======= FAILURES ========
_______ MyTest.test_method1 ________
self = <test_unittest_db.MyTest testMethod=test_method1>
def test_method1(self):
assert hasattr(self, "db")
> assert 0, self.db # fail for demo purposes
2015-09-22 22:52:35 +08:00
E AssertionError: <conftest.db_class.<locals>.DummyDB object at 0xdeadbeef>
E assert 0
test_unittest_db.py:9: AssertionError
_______ MyTest.test_method2 ________
self = <test_unittest_db.MyTest testMethod=test_method2>
def test_method2(self):
> assert 0, self.db # fail for demo purposes
2015-09-22 22:52:35 +08:00
E AssertionError: <conftest.db_class.<locals>.DummyDB object at 0xdeadbeef>
E assert 0
test_unittest_db.py:12: AssertionError
======= 2 failed in 0.12 seconds ========
2012-10-19 16:07:11 +08:00
This default pytest traceback shows that the two test methods
2012-10-18 18:24:50 +08:00
share the same ``self.db`` instance which was our intention
when writing the class-scoped fixture function above.
autouse fixtures and accessing other fixtures
-------------------------------------------------------------------
2015-11-28 14:46:45 +08:00
Although it's usually better to explicitly declare use of fixtures you need
for a given test, you may sometimes want to have fixtures that are
2012-10-19 16:07:11 +08:00
automatically used in a given context. After all, the traditional
style of unittest-setup mandates the use of this implicit fixture writing
and chances are, you are used to it or like it.
You can flag fixture functions with ``@pytest.fixture(autouse=True)``
and define the fixture function in the context where you want it used.
Let's look at an ``initdir`` fixture which makes all test methods of a
``TestCase`` class execute in a temporary directory with a
pre-initialized ``samplefile.ini``. Our ``initdir`` fixture itself uses
the pytest builtin :ref:`tmpdir <tmpdir>` fixture to delegate the
creation of a per-test temporary directory::
# content of test_unittest_cleandir.py
import pytest
import unittest
class MyTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def initdir(self, tmpdir):
tmpdir.chdir() # change to pytest-provided temporary directory
tmpdir.join("samplefile.ini").write("# testdata")
def test_method(self):
s = open("samplefile.ini").read()
assert "testdata" in s
2012-10-18 18:24:50 +08:00
Due to the ``autouse`` flag the ``initdir`` fixture function will be
used for all methods of the class where it is defined. This is a
2012-10-19 16:07:11 +08:00
shortcut for using a ``@pytest.mark.usefixtures("initdir")`` marker
on the class like in the previous example.
Running this test module ...::
$ py.test -q test_unittest_cleandir.py
.
1 passed in 0.12 seconds
... gives us one passed test because the ``initdir`` fixture function
was executed ahead of the ``test_method``.
.. note::
2012-10-19 16:07:11 +08:00
While pytest supports receiving fixtures via :ref:`test function arguments <funcargs>` for non-unittest test methods, ``unittest.TestCase`` methods cannot directly receive fixture
function arguments as implementing that is likely to inflict
on the ability to run general unittest.TestCase test suites.
2012-10-19 16:07:11 +08:00
Maybe optional support would be possible, though. If unittest finally
grows a plugin system that should help as well. In the meanwhile, the
above ``usefixtures`` and ``autouse`` examples should help to mix in
pytest fixtures into unittest suites. And of course you can also start
to selectively leave away the ``unittest.TestCase`` subclassing, use
plain asserts and get the unlimited pytest feature set.
Converting from unittest to pytest
---------------------------------------
If you want to convert your unittest testcases to pytest, there are
some helpers like `unittest2pytest
<https://pypi.python.org/pypi/unittest2pytest/>`__, which uses lib2to3
and introspection for the transformation.