Fixed Bug Regarding Attribute Error in pytest.approx For Types Implicitly Convertible to Numpy Arrays (#12232)
* added test case in testing/python/approx.py based on test case provided by reporter in issue #12114 * test cases pass for pytest testing/python/approx.py * expanded the type annotation to include objects which may cast to a array and renamed other_side to other_side_as_array and asserted that it is not none
This commit is contained in:
parent
a830a3e98d
commit
5cffef7f07
1
AUTHORS
1
AUTHORS
|
@ -321,6 +321,7 @@ Pierre Sassoulas
|
|||
Pieter Mulder
|
||||
Piotr Banaszkiewicz
|
||||
Piotr Helm
|
||||
Poulami Sau
|
||||
Prakhar Gurunani
|
||||
Prashant Anand
|
||||
Prashant Sharma
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
Fixed attribute error in pytest.approx for types implicitly convertible to numpy arrays by converting other_side to a numpy array so that np_array_shape != other_side.shape can be properly checked.
|
|
@ -142,7 +142,7 @@ class ApproxNumpy(ApproxBase):
|
|||
)
|
||||
return f"approx({list_scalars!r})"
|
||||
|
||||
def _repr_compare(self, other_side: "ndarray") -> List[str]:
|
||||
def _repr_compare(self, other_side: Union["ndarray", List[Any]]) -> List[str]:
|
||||
import itertools
|
||||
import math
|
||||
|
||||
|
@ -163,10 +163,14 @@ class ApproxNumpy(ApproxBase):
|
|||
self._approx_scalar, self.expected.tolist()
|
||||
)
|
||||
|
||||
if np_array_shape != other_side.shape:
|
||||
# convert other_side to numpy array to ensure shape attribute is available
|
||||
other_side_as_array = _as_numpy_array(other_side)
|
||||
assert other_side_as_array is not None
|
||||
|
||||
if np_array_shape != other_side_as_array.shape:
|
||||
return [
|
||||
"Impossible to compare arrays with different shapes.",
|
||||
f"Shapes: {np_array_shape} and {other_side.shape}",
|
||||
f"Shapes: {np_array_shape} and {other_side_as_array.shape}",
|
||||
]
|
||||
|
||||
number_of_elements = self.expected.size
|
||||
|
@ -175,7 +179,7 @@ class ApproxNumpy(ApproxBase):
|
|||
different_ids = []
|
||||
for index in itertools.product(*(range(i) for i in np_array_shape)):
|
||||
approx_value = get_value_from_nested_list(approx_side_as_seq, index)
|
||||
other_value = get_value_from_nested_list(other_side, index)
|
||||
other_value = get_value_from_nested_list(other_side_as_array, index)
|
||||
if approx_value != other_value:
|
||||
abs_diff = abs(approx_value.expected - other_value)
|
||||
max_abs_diff = max(max_abs_diff, abs_diff)
|
||||
|
@ -188,7 +192,7 @@ class ApproxNumpy(ApproxBase):
|
|||
message_data = [
|
||||
(
|
||||
str(index),
|
||||
str(get_value_from_nested_list(other_side, index)),
|
||||
str(get_value_from_nested_list(other_side_as_array, index)),
|
||||
str(get_value_from_nested_list(approx_side_as_seq, index)),
|
||||
)
|
||||
for index in different_ids
|
||||
|
|
|
@ -763,6 +763,23 @@ class TestApprox:
|
|||
assert a12 != approx(a21)
|
||||
assert a21 != approx(a12)
|
||||
|
||||
def test_numpy_array_implicit_conversion(self):
|
||||
np = pytest.importorskip("numpy")
|
||||
|
||||
class ImplicitArray:
|
||||
"""Type which is implicitly convertible to a numpy array."""
|
||||
|
||||
def __init__(self, vals):
|
||||
self.vals = vals
|
||||
|
||||
def __array__(self, dtype=None, copy=None):
|
||||
return np.array(self.vals)
|
||||
|
||||
vec1 = ImplicitArray([1.0, 2.0, 3.0])
|
||||
vec2 = ImplicitArray([1.0, 2.0, 4.0])
|
||||
# see issue #12114 for test case
|
||||
assert vec1 != approx(vec2)
|
||||
|
||||
def test_numpy_array_protocol(self):
|
||||
"""
|
||||
array-like objects such as tensorflow's DeviceArray are handled like ndarray.
|
||||
|
|
Loading…
Reference in New Issue