Reflect dimension in approx repr for numpy arrays.

This commit is contained in:
Kale Kundert 2018-07-30 23:22:06 -07:00
parent 253419316c
commit 7d8688d54b
No known key found for this signature in database
GPG Key ID: C6238221D17CAFAE
2 changed files with 21 additions and 15 deletions

View File

@ -82,13 +82,17 @@ class ApproxNumpy(ApproxBase):
"""
def __repr__(self):
# It might be nice to rewrite this function to account for the
# shape of the array...
import numpy as np
list_scalars = []
for x in np.ndindex(self.expected.shape):
list_scalars.append(self._approx_scalar(np.asscalar(self.expected[x])))
def recursive_map(f, x):
if isinstance(x, list):
return list(recursive_map(f, xi) for xi in x)
else:
return f(x)
list_scalars = recursive_map(
self._approx_scalar,
self.expected.tolist())
return "approx({!r})".format(list_scalars)

View File

@ -59,17 +59,19 @@ class TestApprox(object):
),
)
def test_repr_0d_array(self, plus_minus):
def test_repr_nd_array(self, plus_minus):
# Make sure that arrays of all different dimensions are repr'd
# correctly.
np = pytest.importorskip("numpy")
np_array = np.array(5.)
assert approx(np_array) == 5.0
string_expected = "approx([5.0 {} 5.0e-06])".format(plus_minus)
assert repr(approx(np_array)) == string_expected
np_array = np.array([5.])
assert approx(np_array) == 5.0
assert repr(approx(np_array)) == string_expected
examples = [
(np.array(5.), 'approx(5.0 {pm} 5.0e-06)'),
(np.array([5.]), 'approx([5.0 {pm} 5.0e-06])'),
(np.array([[5.]]), 'approx([[5.0 {pm} 5.0e-06]])'),
(np.array([[5., 6.]]), 'approx([[5.0 {pm} 5.0e-06, 6.0 {pm} 6.0e-06]])'),
(np.array([[5.], [6.]]), 'approx([[5.0 {pm} 5.0e-06], [6.0 {pm} 6.0e-06]])'),
]
for np_array, repr_string in examples:
assert repr(approx(np_array)) == repr_string.format(pm=plus_minus)
def test_operator_overloading(self):
assert 1 == approx(1, rel=1e-6, abs=1e-12)