Resolve merge conflict due to approx being moved.
This commit is contained in:
commit
8c22aee256
|
@ -6,7 +6,6 @@ import inspect
|
|||
import sys
|
||||
import os
|
||||
import collections
|
||||
import math
|
||||
from itertools import count
|
||||
|
||||
import py
|
||||
|
@ -1091,587 +1090,6 @@ def _showfixtures_main(config, session):
|
|||
red=True)
|
||||
|
||||
|
||||
# builtin pytest.raises helper
|
||||
|
||||
def raises(expected_exception, *args, **kwargs):
|
||||
"""
|
||||
Assert that a code block/function call raises ``expected_exception``
|
||||
and raise a failure exception otherwise.
|
||||
|
||||
This helper produces a ``ExceptionInfo()`` object (see below).
|
||||
|
||||
If using Python 2.5 or above, you may use this function as a
|
||||
context manager::
|
||||
|
||||
>>> with raises(ZeroDivisionError):
|
||||
... 1/0
|
||||
|
||||
.. versionchanged:: 2.10
|
||||
|
||||
In the context manager form you may use the keyword argument
|
||||
``message`` to specify a custom failure message::
|
||||
|
||||
>>> with raises(ZeroDivisionError, message="Expecting ZeroDivisionError"):
|
||||
... pass
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
Failed: Expecting ZeroDivisionError
|
||||
|
||||
.. note::
|
||||
|
||||
When using ``pytest.raises`` as a context manager, it's worthwhile to
|
||||
note that normal context manager rules apply and that the exception
|
||||
raised *must* be the final line in the scope of the context manager.
|
||||
Lines of code after that, within the scope of the context manager will
|
||||
not be executed. For example::
|
||||
|
||||
>>> value = 15
|
||||
>>> with raises(ValueError) as exc_info:
|
||||
... if value > 10:
|
||||
... raise ValueError("value must be <= 10")
|
||||
... assert exc_info.type == ValueError # this will not execute
|
||||
|
||||
Instead, the following approach must be taken (note the difference in
|
||||
scope)::
|
||||
|
||||
>>> with raises(ValueError) as exc_info:
|
||||
... if value > 10:
|
||||
... raise ValueError("value must be <= 10")
|
||||
...
|
||||
>>> assert exc_info.type == ValueError
|
||||
|
||||
Or you can use the keyword argument ``match`` to assert that the
|
||||
exception matches a text or regex::
|
||||
|
||||
>>> with raises(ValueError, match='must be 0 or None'):
|
||||
... raise ValueError("value must be 0 or None")
|
||||
|
||||
>>> with raises(ValueError, match=r'must be \d+$'):
|
||||
... raise ValueError("value must be 42")
|
||||
|
||||
Or you can specify a callable by passing a to-be-called lambda::
|
||||
|
||||
>>> raises(ZeroDivisionError, lambda: 1/0)
|
||||
<ExceptionInfo ...>
|
||||
|
||||
or you can specify an arbitrary callable with arguments::
|
||||
|
||||
>>> def f(x): return 1/x
|
||||
...
|
||||
>>> raises(ZeroDivisionError, f, 0)
|
||||
<ExceptionInfo ...>
|
||||
>>> raises(ZeroDivisionError, f, x=0)
|
||||
<ExceptionInfo ...>
|
||||
|
||||
A third possibility is to use a string to be executed::
|
||||
|
||||
>>> raises(ZeroDivisionError, "f(0)")
|
||||
<ExceptionInfo ...>
|
||||
|
||||
.. autoclass:: _pytest._code.ExceptionInfo
|
||||
:members:
|
||||
|
||||
.. note::
|
||||
Similar to caught exception objects in Python, explicitly clearing
|
||||
local references to returned ``ExceptionInfo`` objects can
|
||||
help the Python interpreter speed up its garbage collection.
|
||||
|
||||
Clearing those references breaks a reference cycle
|
||||
(``ExceptionInfo`` --> caught exception --> frame stack raising
|
||||
the exception --> current frame stack --> local variables -->
|
||||
``ExceptionInfo``) which makes Python keep all objects referenced
|
||||
from that cycle (including all local variables in the current
|
||||
frame) alive until the next cyclic garbage collection run. See the
|
||||
official Python ``try`` statement documentation for more detailed
|
||||
information.
|
||||
|
||||
"""
|
||||
__tracebackhide__ = True
|
||||
msg = ("exceptions must be old-style classes or"
|
||||
" derived from BaseException, not %s")
|
||||
if isinstance(expected_exception, tuple):
|
||||
for exc in expected_exception:
|
||||
if not isclass(exc):
|
||||
raise TypeError(msg % type(exc))
|
||||
elif not isclass(expected_exception):
|
||||
raise TypeError(msg % type(expected_exception))
|
||||
|
||||
message = "DID NOT RAISE {0}".format(expected_exception)
|
||||
match_expr = None
|
||||
|
||||
if not args:
|
||||
if "message" in kwargs:
|
||||
message = kwargs.pop("message")
|
||||
if "match" in kwargs:
|
||||
match_expr = kwargs.pop("match")
|
||||
message += " matching '{0}'".format(match_expr)
|
||||
return RaisesContext(expected_exception, message, match_expr)
|
||||
elif isinstance(args[0], str):
|
||||
code, = args
|
||||
assert isinstance(code, str)
|
||||
frame = sys._getframe(1)
|
||||
loc = frame.f_locals.copy()
|
||||
loc.update(kwargs)
|
||||
#print "raises frame scope: %r" % frame.f_locals
|
||||
try:
|
||||
code = _pytest._code.Source(code).compile()
|
||||
py.builtin.exec_(code, frame.f_globals, loc)
|
||||
# XXX didn'T mean f_globals == f_locals something special?
|
||||
# this is destroyed here ...
|
||||
except expected_exception:
|
||||
return _pytest._code.ExceptionInfo()
|
||||
else:
|
||||
func = args[0]
|
||||
try:
|
||||
func(*args[1:], **kwargs)
|
||||
except expected_exception:
|
||||
return _pytest._code.ExceptionInfo()
|
||||
fail(message)
|
||||
|
||||
raises.Exception = fail.Exception
|
||||
|
||||
class RaisesContext(object):
|
||||
def __init__(self, expected_exception, message, match_expr):
|
||||
self.expected_exception = expected_exception
|
||||
self.message = message
|
||||
self.match_expr = match_expr
|
||||
self.excinfo = None
|
||||
|
||||
def __enter__(self):
|
||||
self.excinfo = object.__new__(_pytest._code.ExceptionInfo)
|
||||
return self.excinfo
|
||||
|
||||
def __exit__(self, *tp):
|
||||
__tracebackhide__ = True
|
||||
if tp[0] is None:
|
||||
fail(self.message)
|
||||
if sys.version_info < (2, 7):
|
||||
# py26: on __exit__() exc_value often does not contain the
|
||||
# exception value.
|
||||
# http://bugs.python.org/issue7853
|
||||
if not isinstance(tp[1], BaseException):
|
||||
exc_type, value, traceback = tp
|
||||
tp = exc_type, exc_type(value), traceback
|
||||
self.excinfo.__init__(tp)
|
||||
suppress_exception = issubclass(self.excinfo.type, self.expected_exception)
|
||||
if sys.version_info[0] == 2 and suppress_exception:
|
||||
sys.exc_clear()
|
||||
if self.match_expr:
|
||||
self.excinfo.match(self.match_expr)
|
||||
return suppress_exception
|
||||
|
||||
|
||||
|
||||
# builtin pytest.approx helper
|
||||
|
||||
class ApproxBase(object):
|
||||
"""
|
||||
Provide shared utilities for making approximate comparisons between numbers
|
||||
or sequences of numbers.
|
||||
"""
|
||||
|
||||
def __init__(self, expected, rel=None, abs=None):
|
||||
self.expected = expected
|
||||
self.abs = abs
|
||||
self.rel = rel
|
||||
|
||||
def __repr__(self):
|
||||
return ', '.join(
|
||||
repr(self._approx_scalar(x))
|
||||
for x in self._yield_expected())
|
||||
|
||||
def __eq__(self, actual):
|
||||
return all(
|
||||
a == self._approx_scalar(x)
|
||||
for a, x in self._yield_comparisons(actual))
|
||||
|
||||
__hash__ = None
|
||||
|
||||
def __ne__(self, actual):
|
||||
return not (actual == self)
|
||||
|
||||
def _approx_scalar(self, x):
|
||||
return ApproxScalar(x, rel=self.rel, abs=self.abs)
|
||||
|
||||
def _yield_expected(self, actual):
|
||||
"""
|
||||
Yield all the expected values associated with this object. This is
|
||||
used to implement the `__repr__` method.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
"""
|
||||
Yield all the pairs of numbers to be compared. This is used to
|
||||
implement the `__eq__` method.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
|
||||
class ApproxNumpy(ApproxBase, np.ndarray):
|
||||
"""
|
||||
Perform approximate comparisons for numpy arrays.
|
||||
|
||||
This class must inherit from numpy.ndarray in order to allow the approx
|
||||
to be on either side of the `==` operator. The reason for this has to
|
||||
do with how python decides whether to call `a.__eq__()` or `b.__eq__()`
|
||||
when it encounters `a == b`.
|
||||
|
||||
If `a` and `b` are not related by inheritance, `a` gets priority. So
|
||||
as long as `a.__eq__` is defined, it will be called. Because most
|
||||
implementations of `a.__eq__` end up calling `b.__eq__`, this detail
|
||||
usually doesn't matter. However, `numpy.ndarray.__eq__` raises an
|
||||
error complaining that "the truth value of an array with more than
|
||||
one element is ambiguous. Use a.any() or a.all()" when compared with a
|
||||
custom class, so `b.__eq__` never gets called.
|
||||
|
||||
The trick is that the priority rules change if `a` and `b` are related
|
||||
by inheritance. Specifically, `b.__eq__` gets priority if `b` is a
|
||||
subclass of `a`. So we can guarantee that `ApproxNumpy.__eq__` gets
|
||||
called by inheriting from `numpy.ndarray`.
|
||||
"""
|
||||
|
||||
def __new__(cls, expected, rel=None, abs=None):
|
||||
"""
|
||||
Numpy uses __new__ (rather than __init__) to initialize objects.
|
||||
|
||||
The `expected` argument must be a numpy array. This should be
|
||||
ensured by the approx() delegator function.
|
||||
"""
|
||||
assert isinstance(expected, np.ndarray)
|
||||
obj = super(ApproxNumpy, cls).__new__(cls, expected.shape)
|
||||
obj.__init__(expected, rel, abs)
|
||||
return obj
|
||||
|
||||
def __repr__(self):
|
||||
# It might be nice to rewrite this function to account for the
|
||||
# shape of the array...
|
||||
return '[' + ApproxBase.__repr__(self) + ']'
|
||||
|
||||
def __eq__(self, actual):
|
||||
try:
|
||||
actual = np.array(actual)
|
||||
except:
|
||||
raise ValueError("cannot cast '{0}' to numpy.ndarray".format(actual))
|
||||
|
||||
if actual.shape != self.expected.shape:
|
||||
return False
|
||||
|
||||
return ApproxBase.__eq__(self, actual)
|
||||
|
||||
def _yield_expected(self):
|
||||
for x in self.expected:
|
||||
yield x
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
# We can be sure that `actual` is a numpy array, because it's
|
||||
# casted in `__eq__` before being passed to `ApproxBase.__eq__`,
|
||||
# which is the only method that calls this one.
|
||||
for i in np.ndindex(self.expected.shape):
|
||||
yield actual[i], self.expected[i]
|
||||
|
||||
|
||||
except ImportError:
|
||||
np = None
|
||||
|
||||
class ApproxMapping(ApproxBase):
|
||||
"""
|
||||
Perform approximate comparisons for mappings where the values are numbers
|
||||
(the keys can be anything).
|
||||
"""
|
||||
|
||||
def __repr__(self):
|
||||
item = lambda k, v: "'{0}': {1}".format(k, self._approx_scalar(v))
|
||||
return '{' + ', '.join(item(k,v) for k,v in self.expected.items()) + '}'
|
||||
|
||||
def __eq__(self, actual):
|
||||
if actual.keys() != self.expected.keys():
|
||||
return False
|
||||
|
||||
return ApproxBase.__eq__(self, actual)
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
for k in self.expected.keys():
|
||||
yield actual[k], self.expected[k]
|
||||
|
||||
|
||||
class ApproxSequence(ApproxBase):
|
||||
"""
|
||||
Perform approximate comparisons for sequences of numbers.
|
||||
"""
|
||||
|
||||
def __repr__(self):
|
||||
open, close = '()' if isinstance(self.expected, tuple) else '[]'
|
||||
return open + ApproxBase.__repr__(self) + close
|
||||
|
||||
def __eq__(self, actual):
|
||||
if len(actual) != len(self.expected):
|
||||
return False
|
||||
return ApproxBase.__eq__(self, actual)
|
||||
|
||||
def _yield_expected(self):
|
||||
return iter(self.expected)
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
return zip(actual, self.expected)
|
||||
|
||||
|
||||
class ApproxScalar(ApproxBase):
|
||||
"""
|
||||
Perform approximate comparisons for single numbers only.
|
||||
"""
|
||||
|
||||
def __repr__(self):
|
||||
"""
|
||||
Return a string communicating both the expected value and the tolerance
|
||||
for the comparison being made, e.g. '1.0 +- 1e-6'. Use the unicode
|
||||
plus/minus symbol if this is python3 (it's too hard to get right for
|
||||
python2).
|
||||
"""
|
||||
if isinstance(self.expected, complex):
|
||||
return str(self.expected)
|
||||
|
||||
# Infinities aren't compared using tolerances, so don't show a
|
||||
# tolerance.
|
||||
if math.isinf(self.expected):
|
||||
return str(self.expected)
|
||||
|
||||
# If a sensible tolerance can't be calculated, self.tolerance will
|
||||
# raise a ValueError. In this case, display '???'.
|
||||
try:
|
||||
vetted_tolerance = '{:.1e}'.format(self.tolerance)
|
||||
except ValueError:
|
||||
vetted_tolerance = '???'
|
||||
|
||||
if sys.version_info[0] == 2:
|
||||
return '{0} +- {1}'.format(self.expected, vetted_tolerance)
|
||||
else:
|
||||
return u'{0} \u00b1 {1}'.format(self.expected, vetted_tolerance)
|
||||
|
||||
def __eq__(self, actual):
|
||||
"""
|
||||
Return true if the given value is equal to the expected value within
|
||||
the pre-specified tolerance.
|
||||
"""
|
||||
from numbers import Number
|
||||
|
||||
# Give a good error message we get values to compare that aren't
|
||||
# numbers, rather than choking on them later on.
|
||||
if not isinstance(actual, Number):
|
||||
raise ValueError("approx can only compare numbers, not '{0}'".format(actual))
|
||||
if not isinstance(self.expected, Number):
|
||||
raise ValueError("approx can only compare numbers, not '{0}'".format(self.expected))
|
||||
|
||||
# Short-circuit exact equality.
|
||||
if actual == self.expected:
|
||||
return True
|
||||
|
||||
# Infinity shouldn't be approximately equal to anything but itself, but
|
||||
# if there's a relative tolerance, it will be infinite and infinity
|
||||
# will seem approximately equal to everything. The equal-to-itself
|
||||
# case would have been short circuited above, so here we can just
|
||||
# return false if the expected value is infinite. The abs() call is
|
||||
# for compatibility with complex numbers.
|
||||
if math.isinf(abs(self.expected)):
|
||||
return False
|
||||
|
||||
# Return true if the two numbers are within the tolerance.
|
||||
return abs(self.expected - actual) <= self.tolerance
|
||||
|
||||
__hash__ = None
|
||||
|
||||
@property
|
||||
def tolerance(self):
|
||||
"""
|
||||
Return the tolerance for the comparison. This could be either an
|
||||
absolute tolerance or a relative tolerance, depending on what the user
|
||||
specified or which would be larger.
|
||||
"""
|
||||
set_default = lambda x, default: x if x is not None else default
|
||||
|
||||
# Figure out what the absolute tolerance should be. ``self.abs`` is
|
||||
# either None or a value specified by the user.
|
||||
absolute_tolerance = set_default(self.abs, 1e-12)
|
||||
|
||||
if absolute_tolerance < 0:
|
||||
raise ValueError("absolute tolerance can't be negative: {}".format(absolute_tolerance))
|
||||
if math.isnan(absolute_tolerance):
|
||||
raise ValueError("absolute tolerance can't be NaN.")
|
||||
|
||||
# If the user specified an absolute tolerance but not a relative one,
|
||||
# just return the absolute tolerance.
|
||||
if self.rel is None:
|
||||
if self.abs is not None:
|
||||
return absolute_tolerance
|
||||
|
||||
# Figure out what the relative tolerance should be. ``self.rel`` is
|
||||
# either None or a value specified by the user. This is done after
|
||||
# we've made sure the user didn't ask for an absolute tolerance only,
|
||||
# because we don't want to raise errors about the relative tolerance if
|
||||
# we aren't even going to use it.
|
||||
relative_tolerance = set_default(self.rel, 1e-6) * abs(self.expected)
|
||||
|
||||
if relative_tolerance < 0:
|
||||
raise ValueError("relative tolerance can't be negative: {}".format(absolute_tolerance))
|
||||
if math.isnan(relative_tolerance):
|
||||
raise ValueError("relative tolerance can't be NaN.")
|
||||
|
||||
# Return the larger of the relative and absolute tolerances.
|
||||
return max(relative_tolerance, absolute_tolerance)
|
||||
|
||||
|
||||
|
||||
def approx(expected, rel=None, abs=None):
|
||||
"""
|
||||
Assert that two numbers (or two sets of numbers) are equal to each other
|
||||
within some tolerance.
|
||||
|
||||
Due to the `intricacies of floating-point arithmetic`__, numbers that we
|
||||
would intuitively expect to be equal are not always so::
|
||||
|
||||
>>> 0.1 + 0.2 == 0.3
|
||||
False
|
||||
|
||||
__ https://docs.python.org/3/tutorial/floatingpoint.html
|
||||
|
||||
This problem is commonly encountered when writing tests, e.g. when making
|
||||
sure that floating-point values are what you expect them to be. One way to
|
||||
deal with this problem is to assert that two floating-point numbers are
|
||||
equal to within some appropriate tolerance::
|
||||
|
||||
>>> abs((0.1 + 0.2) - 0.3) < 1e-6
|
||||
True
|
||||
|
||||
However, comparisons like this are tedious to write and difficult to
|
||||
understand. Furthermore, absolute comparisons like the one above are
|
||||
usually discouraged because there's no tolerance that works well for all
|
||||
situations. ``1e-6`` is good for numbers around ``1``, but too small for
|
||||
very big numbers and too big for very small ones. It's better to express
|
||||
the tolerance as a fraction of the expected value, but relative comparisons
|
||||
like that are even more difficult to write correctly and concisely.
|
||||
|
||||
The ``approx`` class performs floating-point comparisons using a syntax
|
||||
that's as intuitive as possible::
|
||||
|
||||
>>> from pytest import approx
|
||||
>>> 0.1 + 0.2 == approx(0.3)
|
||||
True
|
||||
|
||||
The same syntax also works on sequences of numbers::
|
||||
|
||||
>>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
|
||||
True
|
||||
>>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
|
||||
True
|
||||
|
||||
By default, ``approx`` considers numbers within a relative tolerance of
|
||||
``1e-6`` (i.e. one part in a million) of its expected value to be equal.
|
||||
This treatment would lead to surprising results if the expected value was
|
||||
``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``.
|
||||
To handle this case less surprisingly, ``approx`` also considers numbers
|
||||
within an absolute tolerance of ``1e-12`` of its expected value to be
|
||||
equal. Infinite numbers are another special case. They are only
|
||||
considered equal to themselves, regardless of the relative tolerance. Both
|
||||
the relative and absolute tolerances can be changed by passing arguments to
|
||||
the ``approx`` constructor::
|
||||
|
||||
>>> 1.0001 == approx(1)
|
||||
False
|
||||
>>> 1.0001 == approx(1, rel=1e-3)
|
||||
True
|
||||
>>> 1.0001 == approx(1, abs=1e-3)
|
||||
True
|
||||
|
||||
If you specify ``abs`` but not ``rel``, the comparison will not consider
|
||||
the relative tolerance at all. In other words, two numbers that are within
|
||||
the default relative tolerance of ``1e-6`` will still be considered unequal
|
||||
if they exceed the specified absolute tolerance. If you specify both
|
||||
``abs`` and ``rel``, the numbers will be considered equal if either
|
||||
tolerance is met::
|
||||
|
||||
>>> 1 + 1e-8 == approx(1)
|
||||
True
|
||||
>>> 1 + 1e-8 == approx(1, abs=1e-12)
|
||||
False
|
||||
>>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
|
||||
True
|
||||
|
||||
If you're thinking about using ``approx``, then you might want to know how
|
||||
it compares to other good ways of comparing floating-point numbers. All of
|
||||
these algorithms are based on relative and absolute tolerances and should
|
||||
agree for the most part, but they do have meaningful differences:
|
||||
|
||||
- ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``: True if the relative
|
||||
tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute
|
||||
tolerance is met. Because the relative tolerance is calculated w.r.t.
|
||||
both ``a`` and ``b``, this test is symmetric (i.e. neither ``a`` nor
|
||||
``b`` is a "reference value"). You have to specify an absolute tolerance
|
||||
if you want to compare to ``0.0`` because there is no tolerance by
|
||||
default. Only available in python>=3.5. `More information...`__
|
||||
|
||||
__ https://docs.python.org/3/library/math.html#math.isclose
|
||||
|
||||
- ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference
|
||||
between ``a`` and ``b`` is less that the sum of the relative tolerance
|
||||
w.r.t. ``b`` and the absolute tolerance. Because the relative tolerance
|
||||
is only calculated w.r.t. ``b``, this test is asymmetric and you can
|
||||
think of ``b`` as the reference value. Support for comparing sequences
|
||||
is provided by ``numpy.allclose``. `More information...`__
|
||||
|
||||
__ http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.isclose.html
|
||||
|
||||
- ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b``
|
||||
are within an absolute tolerance of ``1e-7``. No relative tolerance is
|
||||
considered and the absolute tolerance cannot be changed, so this function
|
||||
is not appropriate for very large or very small numbers. Also, it's only
|
||||
available in subclasses of ``unittest.TestCase`` and it's ugly because it
|
||||
doesn't follow PEP8. `More information...`__
|
||||
|
||||
__ https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual
|
||||
|
||||
- ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative
|
||||
tolerance is met w.r.t. ``b`` or if the absolute tolerance is met.
|
||||
Because the relative tolerance is only calculated w.r.t. ``b``, this test
|
||||
is asymmetric and you can think of ``b`` as the reference value. In the
|
||||
special case that you explicitly specify an absolute tolerance but not a
|
||||
relative tolerance, only the absolute tolerance is considered.
|
||||
"""
|
||||
|
||||
from collections import Mapping, Sequence
|
||||
try:
|
||||
String = basestring # python2
|
||||
except NameError:
|
||||
String = str, bytes # python3
|
||||
|
||||
# Delegate the comparison to a class that knows how to deal with the type
|
||||
# of the expected value (e.g. int, float, list, dict, numpy.array, etc).
|
||||
#
|
||||
# This architecture is really driven by the need to support numpy arrays.
|
||||
# The only way to override `==` for arrays without requiring that approx be
|
||||
# the left operand is to inherit the approx object from `numpy.ndarray`.
|
||||
# But that can't be a general solution, because it requires (1) numpy to be
|
||||
# installed and (2) the expected value to be a numpy array. So the general
|
||||
# solution is to delegate each type of expected value to a different class.
|
||||
#
|
||||
# This has the advantage that it made it easy to support mapping types
|
||||
# (i.e. dict). The old code accepted mapping types, but would only compare
|
||||
# their keys, which is probably not what most people would expect.
|
||||
|
||||
if np and isinstance(expected, np.ndarray):
|
||||
cls = ApproxNumpy
|
||||
elif isinstance(expected, Mapping):
|
||||
cls = ApproxMapping
|
||||
elif isinstance(expected, Sequence) and not isinstance(expected, String):
|
||||
cls = ApproxSequence
|
||||
else:
|
||||
cls = ApproxScalar
|
||||
|
||||
return cls(expected, rel, abs)
|
||||
|
||||
|
||||
#
|
||||
# the basic pytest Function item
|
||||
|
|
|
@ -0,0 +1,588 @@
|
|||
import math
|
||||
import sys
|
||||
|
||||
import py
|
||||
|
||||
from _pytest.compat import isclass
|
||||
from _pytest.runner import fail
|
||||
import _pytest._code
|
||||
|
||||
# builtin pytest.approx helper
|
||||
|
||||
class ApproxBase(object):
|
||||
"""
|
||||
Provide shared utilities for making approximate comparisons between numbers
|
||||
or sequences of numbers.
|
||||
"""
|
||||
|
||||
def __init__(self, expected, rel=None, abs=None):
|
||||
self.expected = expected
|
||||
self.abs = abs
|
||||
self.rel = rel
|
||||
|
||||
def __repr__(self):
|
||||
return ', '.join(
|
||||
repr(self._approx_scalar(x))
|
||||
for x in self._yield_expected())
|
||||
|
||||
def __eq__(self, actual):
|
||||
return all(
|
||||
a == self._approx_scalar(x)
|
||||
for a, x in self._yield_comparisons(actual))
|
||||
|
||||
__hash__ = None
|
||||
|
||||
def __ne__(self, actual):
|
||||
return not (actual == self)
|
||||
|
||||
def _approx_scalar(self, x):
|
||||
return ApproxScalar(x, rel=self.rel, abs=self.abs)
|
||||
|
||||
def _yield_expected(self, actual):
|
||||
"""
|
||||
Yield all the expected values associated with this object. This is
|
||||
used to implement the `__repr__` method.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
"""
|
||||
Yield all the pairs of numbers to be compared. This is used to
|
||||
implement the `__eq__` method.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
|
||||
class ApproxNumpy(ApproxBase, np.ndarray):
|
||||
"""
|
||||
Perform approximate comparisons for numpy arrays.
|
||||
|
||||
This class must inherit from numpy.ndarray in order to allow the approx
|
||||
to be on either side of the `==` operator. The reason for this has to
|
||||
do with how python decides whether to call `a.__eq__()` or `b.__eq__()`
|
||||
when it encounters `a == b`.
|
||||
|
||||
If `a` and `b` are not related by inheritance, `a` gets priority. So
|
||||
as long as `a.__eq__` is defined, it will be called. Because most
|
||||
implementations of `a.__eq__` end up calling `b.__eq__`, this detail
|
||||
usually doesn't matter. However, `numpy.ndarray.__eq__` raises an
|
||||
error complaining that "the truth value of an array with more than
|
||||
one element is ambiguous. Use a.any() or a.all()" when compared with a
|
||||
custom class, so `b.__eq__` never gets called.
|
||||
|
||||
The trick is that the priority rules change if `a` and `b` are related
|
||||
by inheritance. Specifically, `b.__eq__` gets priority if `b` is a
|
||||
subclass of `a`. So we can guarantee that `ApproxNumpy.__eq__` gets
|
||||
called by inheriting from `numpy.ndarray`.
|
||||
"""
|
||||
|
||||
def __new__(cls, expected, rel=None, abs=None):
|
||||
"""
|
||||
Numpy uses __new__ (rather than __init__) to initialize objects.
|
||||
|
||||
The `expected` argument must be a numpy array. This should be
|
||||
ensured by the approx() delegator function.
|
||||
"""
|
||||
assert isinstance(expected, np.ndarray)
|
||||
obj = super(ApproxNumpy, cls).__new__(cls, expected.shape)
|
||||
obj.__init__(expected, rel, abs)
|
||||
return obj
|
||||
|
||||
def __repr__(self):
|
||||
# It might be nice to rewrite this function to account for the
|
||||
# shape of the array...
|
||||
return '[' + ApproxBase.__repr__(self) + ']'
|
||||
|
||||
def __eq__(self, actual):
|
||||
try:
|
||||
actual = np.array(actual)
|
||||
except:
|
||||
raise ValueError("cannot cast '{0}' to numpy.ndarray".format(actual))
|
||||
|
||||
if actual.shape != self.expected.shape:
|
||||
return False
|
||||
|
||||
return ApproxBase.__eq__(self, actual)
|
||||
|
||||
def _yield_expected(self):
|
||||
for x in self.expected:
|
||||
yield x
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
# We can be sure that `actual` is a numpy array, because it's
|
||||
# casted in `__eq__` before being passed to `ApproxBase.__eq__`,
|
||||
# which is the only method that calls this one.
|
||||
for i in np.ndindex(self.expected.shape):
|
||||
yield actual[i], self.expected[i]
|
||||
|
||||
|
||||
except ImportError:
|
||||
np = None
|
||||
|
||||
class ApproxMapping(ApproxBase):
|
||||
"""
|
||||
Perform approximate comparisons for mappings where the values are numbers
|
||||
(the keys can be anything).
|
||||
"""
|
||||
|
||||
def __repr__(self):
|
||||
item = lambda k, v: "'{0}': {1}".format(k, self._approx_scalar(v))
|
||||
return '{' + ', '.join(item(k,v) for k,v in self.expected.items()) + '}'
|
||||
|
||||
def __eq__(self, actual):
|
||||
if actual.keys() != self.expected.keys():
|
||||
return False
|
||||
|
||||
return ApproxBase.__eq__(self, actual)
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
for k in self.expected.keys():
|
||||
yield actual[k], self.expected[k]
|
||||
|
||||
|
||||
class ApproxSequence(ApproxBase):
|
||||
"""
|
||||
Perform approximate comparisons for sequences of numbers.
|
||||
"""
|
||||
|
||||
def __repr__(self):
|
||||
open, close = '()' if isinstance(self.expected, tuple) else '[]'
|
||||
return open + ApproxBase.__repr__(self) + close
|
||||
|
||||
def __eq__(self, actual):
|
||||
if len(actual) != len(self.expected):
|
||||
return False
|
||||
return ApproxBase.__eq__(self, actual)
|
||||
|
||||
def _yield_expected(self):
|
||||
return iter(self.expected)
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
return zip(actual, self.expected)
|
||||
|
||||
|
||||
class ApproxScalar(ApproxBase):
|
||||
"""
|
||||
Perform approximate comparisons for single numbers only.
|
||||
"""
|
||||
|
||||
def __repr__(self):
|
||||
"""
|
||||
Return a string communicating both the expected value and the tolerance
|
||||
for the comparison being made, e.g. '1.0 +- 1e-6'. Use the unicode
|
||||
plus/minus symbol if this is python3 (it's too hard to get right for
|
||||
python2).
|
||||
"""
|
||||
if isinstance(self.expected, complex):
|
||||
return str(self.expected)
|
||||
|
||||
# Infinities aren't compared using tolerances, so don't show a
|
||||
# tolerance.
|
||||
if math.isinf(self.expected):
|
||||
return str(self.expected)
|
||||
|
||||
# If a sensible tolerance can't be calculated, self.tolerance will
|
||||
# raise a ValueError. In this case, display '???'.
|
||||
try:
|
||||
vetted_tolerance = '{:.1e}'.format(self.tolerance)
|
||||
except ValueError:
|
||||
vetted_tolerance = '???'
|
||||
|
||||
if sys.version_info[0] == 2:
|
||||
return '{0} +- {1}'.format(self.expected, vetted_tolerance)
|
||||
else:
|
||||
return u'{0} \u00b1 {1}'.format(self.expected, vetted_tolerance)
|
||||
|
||||
def __eq__(self, actual):
|
||||
"""
|
||||
Return true if the given value is equal to the expected value within
|
||||
the pre-specified tolerance.
|
||||
"""
|
||||
from numbers import Number
|
||||
|
||||
# Give a good error message we get values to compare that aren't
|
||||
# numbers, rather than choking on them later on.
|
||||
if not isinstance(actual, Number):
|
||||
raise ValueError("approx can only compare numbers, not '{0}'".format(actual))
|
||||
if not isinstance(self.expected, Number):
|
||||
raise ValueError("approx can only compare numbers, not '{0}'".format(self.expected))
|
||||
|
||||
# Short-circuit exact equality.
|
||||
if actual == self.expected:
|
||||
return True
|
||||
|
||||
# Infinity shouldn't be approximately equal to anything but itself, but
|
||||
# if there's a relative tolerance, it will be infinite and infinity
|
||||
# will seem approximately equal to everything. The equal-to-itself
|
||||
# case would have been short circuited above, so here we can just
|
||||
# return false if the expected value is infinite. The abs() call is
|
||||
# for compatibility with complex numbers.
|
||||
if math.isinf(abs(self.expected)):
|
||||
return False
|
||||
|
||||
# Return true if the two numbers are within the tolerance.
|
||||
return abs(self.expected - actual) <= self.tolerance
|
||||
|
||||
__hash__ = None
|
||||
|
||||
@property
|
||||
def tolerance(self):
|
||||
"""
|
||||
Return the tolerance for the comparison. This could be either an
|
||||
absolute tolerance or a relative tolerance, depending on what the user
|
||||
specified or which would be larger.
|
||||
"""
|
||||
set_default = lambda x, default: x if x is not None else default
|
||||
|
||||
# Figure out what the absolute tolerance should be. ``self.abs`` is
|
||||
# either None or a value specified by the user.
|
||||
absolute_tolerance = set_default(self.abs, 1e-12)
|
||||
|
||||
if absolute_tolerance < 0:
|
||||
raise ValueError("absolute tolerance can't be negative: {}".format(absolute_tolerance))
|
||||
if math.isnan(absolute_tolerance):
|
||||
raise ValueError("absolute tolerance can't be NaN.")
|
||||
|
||||
# If the user specified an absolute tolerance but not a relative one,
|
||||
# just return the absolute tolerance.
|
||||
if self.rel is None:
|
||||
if self.abs is not None:
|
||||
return absolute_tolerance
|
||||
|
||||
# Figure out what the relative tolerance should be. ``self.rel`` is
|
||||
# either None or a value specified by the user. This is done after
|
||||
# we've made sure the user didn't ask for an absolute tolerance only,
|
||||
# because we don't want to raise errors about the relative tolerance if
|
||||
# we aren't even going to use it.
|
||||
relative_tolerance = set_default(self.rel, 1e-6) * abs(self.expected)
|
||||
|
||||
if relative_tolerance < 0:
|
||||
raise ValueError("relative tolerance can't be negative: {}".format(absolute_tolerance))
|
||||
if math.isnan(relative_tolerance):
|
||||
raise ValueError("relative tolerance can't be NaN.")
|
||||
|
||||
# Return the larger of the relative and absolute tolerances.
|
||||
return max(relative_tolerance, absolute_tolerance)
|
||||
|
||||
|
||||
|
||||
def approx(expected, rel=None, abs=None):
|
||||
"""
|
||||
Assert that two numbers (or two sets of numbers) are equal to each other
|
||||
within some tolerance.
|
||||
|
||||
Due to the `intricacies of floating-point arithmetic`__, numbers that we
|
||||
would intuitively expect to be equal are not always so::
|
||||
|
||||
>>> 0.1 + 0.2 == 0.3
|
||||
False
|
||||
|
||||
__ https://docs.python.org/3/tutorial/floatingpoint.html
|
||||
|
||||
This problem is commonly encountered when writing tests, e.g. when making
|
||||
sure that floating-point values are what you expect them to be. One way to
|
||||
deal with this problem is to assert that two floating-point numbers are
|
||||
equal to within some appropriate tolerance::
|
||||
|
||||
>>> abs((0.1 + 0.2) - 0.3) < 1e-6
|
||||
True
|
||||
|
||||
However, comparisons like this are tedious to write and difficult to
|
||||
understand. Furthermore, absolute comparisons like the one above are
|
||||
usually discouraged because there's no tolerance that works well for all
|
||||
situations. ``1e-6`` is good for numbers around ``1``, but too small for
|
||||
very big numbers and too big for very small ones. It's better to express
|
||||
the tolerance as a fraction of the expected value, but relative comparisons
|
||||
like that are even more difficult to write correctly and concisely.
|
||||
|
||||
The ``approx`` class performs floating-point comparisons using a syntax
|
||||
that's as intuitive as possible::
|
||||
|
||||
>>> from pytest import approx
|
||||
>>> 0.1 + 0.2 == approx(0.3)
|
||||
True
|
||||
|
||||
The same syntax also works on sequences of numbers::
|
||||
|
||||
>>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
|
||||
True
|
||||
>>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
|
||||
True
|
||||
|
||||
By default, ``approx`` considers numbers within a relative tolerance of
|
||||
``1e-6`` (i.e. one part in a million) of its expected value to be equal.
|
||||
This treatment would lead to surprising results if the expected value was
|
||||
``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``.
|
||||
To handle this case less surprisingly, ``approx`` also considers numbers
|
||||
within an absolute tolerance of ``1e-12`` of its expected value to be
|
||||
equal. Infinite numbers are another special case. They are only
|
||||
considered equal to themselves, regardless of the relative tolerance. Both
|
||||
the relative and absolute tolerances can be changed by passing arguments to
|
||||
the ``approx`` constructor::
|
||||
|
||||
>>> 1.0001 == approx(1)
|
||||
False
|
||||
>>> 1.0001 == approx(1, rel=1e-3)
|
||||
True
|
||||
>>> 1.0001 == approx(1, abs=1e-3)
|
||||
True
|
||||
|
||||
If you specify ``abs`` but not ``rel``, the comparison will not consider
|
||||
the relative tolerance at all. In other words, two numbers that are within
|
||||
the default relative tolerance of ``1e-6`` will still be considered unequal
|
||||
if they exceed the specified absolute tolerance. If you specify both
|
||||
``abs`` and ``rel``, the numbers will be considered equal if either
|
||||
tolerance is met::
|
||||
|
||||
>>> 1 + 1e-8 == approx(1)
|
||||
True
|
||||
>>> 1 + 1e-8 == approx(1, abs=1e-12)
|
||||
False
|
||||
>>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
|
||||
True
|
||||
|
||||
If you're thinking about using ``approx``, then you might want to know how
|
||||
it compares to other good ways of comparing floating-point numbers. All of
|
||||
these algorithms are based on relative and absolute tolerances and should
|
||||
agree for the most part, but they do have meaningful differences:
|
||||
|
||||
- ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``: True if the relative
|
||||
tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute
|
||||
tolerance is met. Because the relative tolerance is calculated w.r.t.
|
||||
both ``a`` and ``b``, this test is symmetric (i.e. neither ``a`` nor
|
||||
``b`` is a "reference value"). You have to specify an absolute tolerance
|
||||
if you want to compare to ``0.0`` because there is no tolerance by
|
||||
default. Only available in python>=3.5. `More information...`__
|
||||
|
||||
__ https://docs.python.org/3/library/math.html#math.isclose
|
||||
|
||||
- ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference
|
||||
between ``a`` and ``b`` is less that the sum of the relative tolerance
|
||||
w.r.t. ``b`` and the absolute tolerance. Because the relative tolerance
|
||||
is only calculated w.r.t. ``b``, this test is asymmetric and you can
|
||||
think of ``b`` as the reference value. Support for comparing sequences
|
||||
is provided by ``numpy.allclose``. `More information...`__
|
||||
|
||||
__ http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.isclose.html
|
||||
|
||||
- ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b``
|
||||
are within an absolute tolerance of ``1e-7``. No relative tolerance is
|
||||
considered and the absolute tolerance cannot be changed, so this function
|
||||
is not appropriate for very large or very small numbers. Also, it's only
|
||||
available in subclasses of ``unittest.TestCase`` and it's ugly because it
|
||||
doesn't follow PEP8. `More information...`__
|
||||
|
||||
__ https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual
|
||||
|
||||
- ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative
|
||||
tolerance is met w.r.t. ``b`` or if the absolute tolerance is met.
|
||||
Because the relative tolerance is only calculated w.r.t. ``b``, this test
|
||||
is asymmetric and you can think of ``b`` as the reference value. In the
|
||||
special case that you explicitly specify an absolute tolerance but not a
|
||||
relative tolerance, only the absolute tolerance is considered.
|
||||
"""
|
||||
|
||||
from collections import Mapping, Sequence
|
||||
try:
|
||||
String = basestring # python2
|
||||
except NameError:
|
||||
String = str, bytes # python3
|
||||
|
||||
# Delegate the comparison to a class that knows how to deal with the type
|
||||
# of the expected value (e.g. int, float, list, dict, numpy.array, etc).
|
||||
#
|
||||
# This architecture is really driven by the need to support numpy arrays.
|
||||
# The only way to override `==` for arrays without requiring that approx be
|
||||
# the left operand is to inherit the approx object from `numpy.ndarray`.
|
||||
# But that can't be a general solution, because it requires (1) numpy to be
|
||||
# installed and (2) the expected value to be a numpy array. So the general
|
||||
# solution is to delegate each type of expected value to a different class.
|
||||
#
|
||||
# This has the advantage that it made it easy to support mapping types
|
||||
# (i.e. dict). The old code accepted mapping types, but would only compare
|
||||
# their keys, which is probably not what most people would expect.
|
||||
|
||||
if np and isinstance(expected, np.ndarray):
|
||||
cls = ApproxNumpy
|
||||
elif isinstance(expected, Mapping):
|
||||
cls = ApproxMapping
|
||||
elif isinstance(expected, Sequence) and not isinstance(expected, String):
|
||||
cls = ApproxSequence
|
||||
else:
|
||||
cls = ApproxScalar
|
||||
|
||||
return cls(expected, rel, abs)
|
||||
|
||||
|
||||
# builtin pytest.raises helper
|
||||
|
||||
def raises(expected_exception, *args, **kwargs):
|
||||
"""
|
||||
Assert that a code block/function call raises ``expected_exception``
|
||||
and raise a failure exception otherwise.
|
||||
|
||||
This helper produces a ``ExceptionInfo()`` object (see below).
|
||||
|
||||
If using Python 2.5 or above, you may use this function as a
|
||||
context manager::
|
||||
|
||||
>>> with raises(ZeroDivisionError):
|
||||
... 1/0
|
||||
|
||||
.. versionchanged:: 2.10
|
||||
|
||||
In the context manager form you may use the keyword argument
|
||||
``message`` to specify a custom failure message::
|
||||
|
||||
>>> with raises(ZeroDivisionError, message="Expecting ZeroDivisionError"):
|
||||
... pass
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
Failed: Expecting ZeroDivisionError
|
||||
|
||||
.. note::
|
||||
|
||||
When using ``pytest.raises`` as a context manager, it's worthwhile to
|
||||
note that normal context manager rules apply and that the exception
|
||||
raised *must* be the final line in the scope of the context manager.
|
||||
Lines of code after that, within the scope of the context manager will
|
||||
not be executed. For example::
|
||||
|
||||
>>> value = 15
|
||||
>>> with raises(ValueError) as exc_info:
|
||||
... if value > 10:
|
||||
... raise ValueError("value must be <= 10")
|
||||
... assert exc_info.type == ValueError # this will not execute
|
||||
|
||||
Instead, the following approach must be taken (note the difference in
|
||||
scope)::
|
||||
|
||||
>>> with raises(ValueError) as exc_info:
|
||||
... if value > 10:
|
||||
... raise ValueError("value must be <= 10")
|
||||
...
|
||||
>>> assert exc_info.type == ValueError
|
||||
|
||||
Or you can use the keyword argument ``match`` to assert that the
|
||||
exception matches a text or regex::
|
||||
|
||||
>>> with raises(ValueError, match='must be 0 or None'):
|
||||
... raise ValueError("value must be 0 or None")
|
||||
|
||||
>>> with raises(ValueError, match=r'must be \d+$'):
|
||||
... raise ValueError("value must be 42")
|
||||
|
||||
Or you can specify a callable by passing a to-be-called lambda::
|
||||
|
||||
>>> raises(ZeroDivisionError, lambda: 1/0)
|
||||
<ExceptionInfo ...>
|
||||
|
||||
or you can specify an arbitrary callable with arguments::
|
||||
|
||||
>>> def f(x): return 1/x
|
||||
...
|
||||
>>> raises(ZeroDivisionError, f, 0)
|
||||
<ExceptionInfo ...>
|
||||
>>> raises(ZeroDivisionError, f, x=0)
|
||||
<ExceptionInfo ...>
|
||||
|
||||
A third possibility is to use a string to be executed::
|
||||
|
||||
>>> raises(ZeroDivisionError, "f(0)")
|
||||
<ExceptionInfo ...>
|
||||
|
||||
.. autoclass:: _pytest._code.ExceptionInfo
|
||||
:members:
|
||||
|
||||
.. note::
|
||||
Similar to caught exception objects in Python, explicitly clearing
|
||||
local references to returned ``ExceptionInfo`` objects can
|
||||
help the Python interpreter speed up its garbage collection.
|
||||
|
||||
Clearing those references breaks a reference cycle
|
||||
(``ExceptionInfo`` --> caught exception --> frame stack raising
|
||||
the exception --> current frame stack --> local variables -->
|
||||
``ExceptionInfo``) which makes Python keep all objects referenced
|
||||
from that cycle (including all local variables in the current
|
||||
frame) alive until the next cyclic garbage collection run. See the
|
||||
official Python ``try`` statement documentation for more detailed
|
||||
information.
|
||||
|
||||
"""
|
||||
__tracebackhide__ = True
|
||||
msg = ("exceptions must be old-style classes or"
|
||||
" derived from BaseException, not %s")
|
||||
if isinstance(expected_exception, tuple):
|
||||
for exc in expected_exception:
|
||||
if not isclass(exc):
|
||||
raise TypeError(msg % type(exc))
|
||||
elif not isclass(expected_exception):
|
||||
raise TypeError(msg % type(expected_exception))
|
||||
|
||||
message = "DID NOT RAISE {0}".format(expected_exception)
|
||||
match_expr = None
|
||||
|
||||
if not args:
|
||||
if "message" in kwargs:
|
||||
message = kwargs.pop("message")
|
||||
if "match" in kwargs:
|
||||
match_expr = kwargs.pop("match")
|
||||
message += " matching '{0}'".format(match_expr)
|
||||
return RaisesContext(expected_exception, message, match_expr)
|
||||
elif isinstance(args[0], str):
|
||||
code, = args
|
||||
assert isinstance(code, str)
|
||||
frame = sys._getframe(1)
|
||||
loc = frame.f_locals.copy()
|
||||
loc.update(kwargs)
|
||||
#print "raises frame scope: %r" % frame.f_locals
|
||||
try:
|
||||
code = _pytest._code.Source(code).compile()
|
||||
py.builtin.exec_(code, frame.f_globals, loc)
|
||||
# XXX didn'T mean f_globals == f_locals something special?
|
||||
# this is destroyed here ...
|
||||
except expected_exception:
|
||||
return _pytest._code.ExceptionInfo()
|
||||
else:
|
||||
func = args[0]
|
||||
try:
|
||||
func(*args[1:], **kwargs)
|
||||
except expected_exception:
|
||||
return _pytest._code.ExceptionInfo()
|
||||
fail(message)
|
||||
|
||||
raises.Exception = fail.Exception
|
||||
|
||||
class RaisesContext(object):
|
||||
def __init__(self, expected_exception, message, match_expr):
|
||||
self.expected_exception = expected_exception
|
||||
self.message = message
|
||||
self.match_expr = match_expr
|
||||
self.excinfo = None
|
||||
|
||||
def __enter__(self):
|
||||
self.excinfo = object.__new__(_pytest._code.ExceptionInfo)
|
||||
return self.excinfo
|
||||
|
||||
def __exit__(self, *tp):
|
||||
__tracebackhide__ = True
|
||||
if tp[0] is None:
|
||||
fail(self.message)
|
||||
if sys.version_info < (2, 7):
|
||||
# py26: on __exit__() exc_value often does not contain the
|
||||
# exception value.
|
||||
# http://bugs.python.org/issue7853
|
||||
if not isinstance(tp[1], BaseException):
|
||||
exc_type, value, traceback = tp
|
||||
tp = exc_type, exc_type(value), traceback
|
||||
self.excinfo.__init__(tp)
|
||||
suppress_exception = issubclass(self.excinfo.type, self.expected_exception)
|
||||
if sys.version_info[0] == 2 and suppress_exception:
|
||||
sys.exc_clear()
|
||||
if self.match_expr:
|
||||
self.excinfo.match(self.match_expr)
|
||||
return suppress_exception
|
|
@ -0,0 +1 @@
|
|||
Internal code move: move code for pytest.approx/pytest.raises to own files in order to cut down the size of python.py
|
|
@ -22,10 +22,11 @@ from _pytest.skipping import xfail
|
|||
from _pytest.main import Item, Collector, File, Session
|
||||
from _pytest.fixtures import fillfixtures as _fillfuncargs
|
||||
from _pytest.python import (
|
||||
raises, approx,
|
||||
Module, Class, Instance, Function, Generator,
|
||||
)
|
||||
|
||||
from _pytest.python_api import approx, raises
|
||||
|
||||
set_trace = __pytestPDB.set_trace
|
||||
|
||||
__all__ = [
|
||||
|
|
Loading…
Reference in New Issue