python_api: handle array-like args in approx() (#8137)

This commit is contained in:
Jakob van Santen 2020-12-15 12:49:29 +01:00 committed by GitHub
parent 6c899a0afa
commit 9ccbf5b899
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 67 additions and 6 deletions

10
changelog/8132.bugfix.rst Normal file
View File

@ -0,0 +1,10 @@
Fixed regression in ``approx``: in 6.2.0 ``approx`` no longer raises
``TypeError`` when dealing with non-numeric types, falling back to normal comparison.
Before 6.2.0, array types like tf.DeviceArray fell through to the scalar case,
and happened to compare correctly to a scalar if they had only one element.
After 6.2.0, these types began failing, because they inherited neither from
standard Python number hierarchy nor from ``numpy.ndarray``.
``approx`` now converts arguments to ``numpy.ndarray`` if they expose the array
protocol and are not scalars. This treats array-like objects like numpy arrays,
regardless of size.

View File

@ -15,9 +15,14 @@ from typing import overload
from typing import Pattern
from typing import Tuple
from typing import Type
from typing import TYPE_CHECKING
from typing import TypeVar
from typing import Union
if TYPE_CHECKING:
from numpy import ndarray
import _pytest._code
from _pytest.compat import final
from _pytest.compat import STRING_TYPES
@ -232,10 +237,11 @@ class ApproxScalar(ApproxBase):
def __eq__(self, actual) -> bool:
"""Return whether the given value is equal to the expected value
within the pre-specified tolerance."""
if _is_numpy_array(actual):
asarray = _as_numpy_array(actual)
if asarray is not None:
# Call ``__eq__()`` manually to prevent infinite-recursion with
# numpy<1.13. See #3748.
return all(self.__eq__(a) for a in actual.flat)
return all(self.__eq__(a) for a in asarray.flat)
# Short-circuit exact equality.
if actual == self.expected:
@ -521,6 +527,7 @@ def approx(expected, rel=None, abs=None, nan_ok: bool = False) -> ApproxBase:
elif isinstance(expected, Mapping):
cls = ApproxMapping
elif _is_numpy_array(expected):
expected = _as_numpy_array(expected)
cls = ApproxNumpy
elif (
isinstance(expected, Iterable)
@ -536,16 +543,30 @@ def approx(expected, rel=None, abs=None, nan_ok: bool = False) -> ApproxBase:
def _is_numpy_array(obj: object) -> bool:
"""Return true if the given object is a numpy array.
"""
Return true if the given object is implicitly convertible to ndarray,
and numpy is already imported.
"""
return _as_numpy_array(obj) is not None
A special effort is made to avoid importing numpy unless it's really necessary.
def _as_numpy_array(obj: object) -> Optional["ndarray"]:
"""
Return an ndarray if the given object is implicitly convertible to ndarray,
and numpy is already imported, otherwise None.
"""
import sys
np: Any = sys.modules.get("numpy")
if np is not None:
return isinstance(obj, np.ndarray)
return False
# avoid infinite recursion on numpy scalars, which have __array__
if np.isscalar(obj):
return None
elif isinstance(obj, np.ndarray):
return obj
elif hasattr(obj, "__array__") or hasattr("obj", "__array_interface__"):
return np.asarray(obj)
return None
# builtin pytest.raises helper

View File

@ -447,6 +447,36 @@ class TestApprox:
assert a12 != approx(a21)
assert a21 != approx(a12)
def test_numpy_array_protocol(self):
"""
array-like objects such as tensorflow's DeviceArray are handled like ndarray.
See issue #8132
"""
np = pytest.importorskip("numpy")
class DeviceArray:
def __init__(self, value, size):
self.value = value
self.size = size
def __array__(self):
return self.value * np.ones(self.size)
class DeviceScalar:
def __init__(self, value):
self.value = value
def __array__(self):
return np.array(self.value)
expected = 1
actual = 1 + 1e-6
assert approx(expected) == DeviceArray(actual, size=1)
assert approx(expected) == DeviceArray(actual, size=2)
assert approx(expected) == DeviceScalar(actual)
assert approx(DeviceScalar(expected)) == actual
assert approx(DeviceScalar(expected)) == DeviceScalar(actual)
def test_doctests(self, mocked_doctest_runner) -> None:
import doctest