Add support for numpy arrays (and dicts) to approx.
This fixes #1994. It turned out to require a lot of refactoring because subclassing numpy.ndarray was necessary to coerce python into calling the right `__eq__` operator.
This commit is contained in:
parent
467c526307
commit
9f3122fec6
|
@ -1117,7 +1117,6 @@ def raises(expected_exception, *args, **kwargs):
|
|||
...
|
||||
Failed: Expecting ZeroDivisionError
|
||||
|
||||
|
||||
.. note::
|
||||
|
||||
When using ``pytest.raises`` as a context manager, it's worthwhile to
|
||||
|
@ -1150,7 +1149,6 @@ def raises(expected_exception, *args, **kwargs):
|
|||
>>> with raises(ValueError, match=r'must be \d+$'):
|
||||
... raise ValueError("value must be 42")
|
||||
|
||||
|
||||
Or you can specify a callable by passing a to-be-called lambda::
|
||||
|
||||
>>> raises(ZeroDivisionError, lambda: 1/0)
|
||||
|
@ -1230,10 +1228,8 @@ def raises(expected_exception, *args, **kwargs):
|
|||
return _pytest._code.ExceptionInfo()
|
||||
fail(message)
|
||||
|
||||
|
||||
raises.Exception = fail.Exception
|
||||
|
||||
|
||||
class RaisesContext(object):
|
||||
def __init__(self, expected_exception, message, match_expr):
|
||||
self.expected_exception = expected_exception
|
||||
|
@ -1265,9 +1261,271 @@ class RaisesContext(object):
|
|||
return suppress_exception
|
||||
|
||||
|
||||
|
||||
# builtin pytest.approx helper
|
||||
|
||||
class approx(object):
|
||||
class ApproxBase(object):
|
||||
"""
|
||||
Provide shared utilities for making approximate comparisons between numbers
|
||||
or sequences of numbers.
|
||||
"""
|
||||
|
||||
def __init__(self, expected, rel=None, abs=None):
|
||||
self.expected = expected
|
||||
self.abs = abs
|
||||
self.rel = rel
|
||||
|
||||
def __repr__(self):
|
||||
return ', '.join(
|
||||
repr(self._approx_scalar(x))
|
||||
for x in self._yield_expected())
|
||||
|
||||
def __eq__(self, actual):
|
||||
return all(
|
||||
a == self._approx_scalar(x)
|
||||
for a, x in self._yield_comparisons(actual))
|
||||
|
||||
__hash__ = None
|
||||
|
||||
def __ne__(self, actual):
|
||||
return not (actual == self)
|
||||
|
||||
def _approx_scalar(self, x):
|
||||
return ApproxScalar(x, rel=self.rel, abs=self.abs)
|
||||
|
||||
def _yield_expected(self, actual):
|
||||
"""
|
||||
Yield all the expected values associated with this object. This is
|
||||
used to implement the `__repr__` method.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
"""
|
||||
Yield all the pairs of numbers to be compared. This is used to
|
||||
implement the `__eq__` method.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
|
||||
try:
|
||||
import numpy as np
|
||||
|
||||
class ApproxNumpy(ApproxBase, np.ndarray):
|
||||
"""
|
||||
Perform approximate comparisons for numpy arrays.
|
||||
|
||||
This class must inherit from numpy.ndarray in order to allow the approx
|
||||
to be on either side of the `==` operator. The reason for this has to
|
||||
do with how python decides whether to call `a.__eq__()` or `b.__eq__()`
|
||||
when it encounters `a == b`.
|
||||
|
||||
If `a` and `b` are not related by inheritance, `a` gets priority. So
|
||||
as long as `a.__eq__` is defined, it will be called. Because most
|
||||
implementations of `a.__eq__` end up calling `b.__eq__`, this detail
|
||||
usually doesn't matter. However, `numpy.ndarray.__eq__` raises an
|
||||
error complaining that "the truth value of an array with more than
|
||||
one element is ambiguous. Use a.any() or a.all()" when compared with a
|
||||
custom class, so `b.__eq__` never gets called.
|
||||
|
||||
The trick is that the priority rules change if `a` and `b` are related
|
||||
by inheritance. Specifically, `b.__eq__` gets priority if `b` is a
|
||||
subclass of `a`. So we can guarantee that `ApproxNumpy.__eq__` gets
|
||||
called by inheriting from `numpy.ndarray`.
|
||||
"""
|
||||
|
||||
def __new__(cls, expected, rel=None, abs=None):
|
||||
"""
|
||||
Numpy uses __new__ (rather than __init__) to initialize objects.
|
||||
|
||||
The `expected` argument must be a numpy array. This should be
|
||||
ensured by the approx() delegator function.
|
||||
"""
|
||||
assert isinstance(expected, np.ndarray)
|
||||
obj = super(ApproxNumpy, cls).__new__(cls, expected.shape)
|
||||
obj.__init__(expected, rel, abs)
|
||||
return obj
|
||||
|
||||
def __repr__(self):
|
||||
# It might be nice to rewrite this function to account for the
|
||||
# shape of the array...
|
||||
return '[' + ApproxBase.__repr__(self) + ']'
|
||||
|
||||
def __eq__(self, actual):
|
||||
try:
|
||||
actual = np.array(actual)
|
||||
except:
|
||||
raise ValueError("cannot cast '{0}' to numpy.ndarray".format(actual))
|
||||
|
||||
if actual.shape != self.expected.shape:
|
||||
return False
|
||||
|
||||
return ApproxBase.__eq__(self, actual)
|
||||
|
||||
def _yield_expected(self):
|
||||
for x in self.expected:
|
||||
yield x
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
# We can be sure that `actual` is a numpy array, because it's
|
||||
# casted in `__eq__` before being passed to `ApproxBase.__eq__`,
|
||||
# which is the only method that calls this one.
|
||||
for i in np.ndindex(self.expected.shape):
|
||||
yield actual[i], self.expected[i]
|
||||
|
||||
|
||||
except ImportError:
|
||||
np = None
|
||||
|
||||
class ApproxMapping(ApproxBase):
|
||||
"""
|
||||
Perform approximate comparisons for mappings where the values are numbers
|
||||
(the keys can be anything).
|
||||
"""
|
||||
|
||||
def __repr__(self):
|
||||
item = lambda k, v: "'{0}': {1}".format(k, self._approx_scalar(v))
|
||||
return '{' + ', '.join(item(k,v) for k,v in self.expected.items()) + '}'
|
||||
|
||||
def __eq__(self, actual):
|
||||
if actual.keys() != self.expected.keys():
|
||||
return False
|
||||
|
||||
return ApproxBase.__eq__(self, actual)
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
for k in self.expected.keys():
|
||||
yield actual[k], self.expected[k]
|
||||
|
||||
|
||||
class ApproxSequence(ApproxBase):
|
||||
"""
|
||||
Perform approximate comparisons for sequences of numbers.
|
||||
"""
|
||||
|
||||
def __repr__(self):
|
||||
open, close = '()' if isinstance(self.expected, tuple) else '[]'
|
||||
return open + ApproxBase.__repr__(self) + close
|
||||
|
||||
def __eq__(self, actual):
|
||||
if len(actual) != len(self.expected):
|
||||
return False
|
||||
return ApproxBase.__eq__(self, actual)
|
||||
|
||||
def _yield_expected(self):
|
||||
return iter(self.expected)
|
||||
|
||||
def _yield_comparisons(self, actual):
|
||||
return zip(actual, self.expected)
|
||||
|
||||
|
||||
class ApproxScalar(ApproxBase):
|
||||
"""
|
||||
Perform approximate comparisons for single numbers only.
|
||||
"""
|
||||
|
||||
def __repr__(self):
|
||||
"""
|
||||
Return a string communicating both the expected value and the tolerance
|
||||
for the comparison being made, e.g. '1.0 +- 1e-6'. Use the unicode
|
||||
plus/minus symbol if this is python3 (it's too hard to get right for
|
||||
python2).
|
||||
"""
|
||||
if isinstance(self.expected, complex):
|
||||
return str(self.expected)
|
||||
|
||||
# Infinities aren't compared using tolerances, so don't show a
|
||||
# tolerance.
|
||||
if math.isinf(self.expected):
|
||||
return str(self.expected)
|
||||
|
||||
# If a sensible tolerance can't be calculated, self.tolerance will
|
||||
# raise a ValueError. In this case, display '???'.
|
||||
try:
|
||||
vetted_tolerance = '{:.1e}'.format(self.tolerance)
|
||||
except ValueError:
|
||||
vetted_tolerance = '???'
|
||||
|
||||
if sys.version_info[0] == 2:
|
||||
return '{0} +- {1}'.format(self.expected, vetted_tolerance)
|
||||
else:
|
||||
return u'{0} \u00b1 {1}'.format(self.expected, vetted_tolerance)
|
||||
|
||||
def __eq__(self, actual):
|
||||
"""
|
||||
Return true if the given value is equal to the expected value within
|
||||
the pre-specified tolerance.
|
||||
"""
|
||||
from numbers import Number
|
||||
|
||||
# Give a good error message we get values to compare that aren't
|
||||
# numbers, rather than choking on them later on.
|
||||
if not isinstance(actual, Number):
|
||||
raise ValueError("approx can only compare numbers, not '{0}'".format(actual))
|
||||
if not isinstance(self.expected, Number):
|
||||
raise ValueError("approx can only compare numbers, not '{0}'".format(self.expected))
|
||||
|
||||
# Short-circuit exact equality.
|
||||
if actual == self.expected:
|
||||
return True
|
||||
|
||||
# Infinity shouldn't be approximately equal to anything but itself, but
|
||||
# if there's a relative tolerance, it will be infinite and infinity
|
||||
# will seem approximately equal to everything. The equal-to-itself
|
||||
# case would have been short circuited above, so here we can just
|
||||
# return false if the expected value is infinite. The abs() call is
|
||||
# for compatibility with complex numbers.
|
||||
if math.isinf(abs(self.expected)):
|
||||
return False
|
||||
|
||||
# Return true if the two numbers are within the tolerance.
|
||||
return abs(self.expected - actual) <= self.tolerance
|
||||
|
||||
__hash__ = None
|
||||
|
||||
@property
|
||||
def tolerance(self):
|
||||
"""
|
||||
Return the tolerance for the comparison. This could be either an
|
||||
absolute tolerance or a relative tolerance, depending on what the user
|
||||
specified or which would be larger.
|
||||
"""
|
||||
set_default = lambda x, default: x if x is not None else default
|
||||
|
||||
# Figure out what the absolute tolerance should be. ``self.abs`` is
|
||||
# either None or a value specified by the user.
|
||||
absolute_tolerance = set_default(self.abs, 1e-12)
|
||||
|
||||
if absolute_tolerance < 0:
|
||||
raise ValueError("absolute tolerance can't be negative: {}".format(absolute_tolerance))
|
||||
if math.isnan(absolute_tolerance):
|
||||
raise ValueError("absolute tolerance can't be NaN.")
|
||||
|
||||
# If the user specified an absolute tolerance but not a relative one,
|
||||
# just return the absolute tolerance.
|
||||
if self.rel is None:
|
||||
if self.abs is not None:
|
||||
return absolute_tolerance
|
||||
|
||||
# Figure out what the relative tolerance should be. ``self.rel`` is
|
||||
# either None or a value specified by the user. This is done after
|
||||
# we've made sure the user didn't ask for an absolute tolerance only,
|
||||
# because we don't want to raise errors about the relative tolerance if
|
||||
# we aren't even going to use it.
|
||||
relative_tolerance = set_default(self.rel, 1e-6) * abs(self.expected)
|
||||
|
||||
if relative_tolerance < 0:
|
||||
raise ValueError("relative tolerance can't be negative: {}".format(absolute_tolerance))
|
||||
if math.isnan(relative_tolerance):
|
||||
raise ValueError("relative tolerance can't be NaN.")
|
||||
|
||||
# Return the larger of the relative and absolute tolerances.
|
||||
return max(relative_tolerance, absolute_tolerance)
|
||||
|
||||
|
||||
|
||||
def approx(expected, rel=None, abs=None):
|
||||
"""
|
||||
Assert that two numbers (or two sets of numbers) are equal to each other
|
||||
within some tolerance.
|
||||
|
@ -1307,6 +1565,8 @@ class approx(object):
|
|||
|
||||
>>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
|
||||
True
|
||||
>>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
|
||||
True
|
||||
|
||||
By default, ``approx`` considers numbers within a relative tolerance of
|
||||
``1e-6`` (i.e. one part in a million) of its expected value to be equal.
|
||||
|
@ -1380,139 +1640,37 @@ class approx(object):
|
|||
special case that you explicitly specify an absolute tolerance but not a
|
||||
relative tolerance, only the absolute tolerance is considered.
|
||||
"""
|
||||
|
||||
from collections import Mapping, Sequence
|
||||
try:
|
||||
String = basestring # python2
|
||||
except NameError:
|
||||
String = str, bytes # python3
|
||||
|
||||
def __init__(self, expected, rel=None, abs=None):
|
||||
self.expected = expected
|
||||
self.abs = abs
|
||||
self.rel = rel
|
||||
# Delegate the comparison to a class that knows how to deal with the type
|
||||
# of the expected value (e.g. int, float, list, dict, numpy.array, etc).
|
||||
#
|
||||
# This architecture is really driven by the need to support numpy arrays.
|
||||
# The only way to override `==` for arrays without requiring that approx be
|
||||
# the left operand is to inherit the approx object from `numpy.ndarray`.
|
||||
# But that can't be a general solution, because it requires (1) numpy to be
|
||||
# installed and (2) the expected value to be a numpy array. So the general
|
||||
# solution is to delegate each type of expected value to a different class.
|
||||
#
|
||||
# This has the advantage that it made it easy to support mapping types
|
||||
# (i.e. dict). The old code accepted mapping types, but would only compare
|
||||
# their keys, which is probably not what most people would expect.
|
||||
|
||||
def __repr__(self):
|
||||
return ', '.join(repr(x) for x in self.expected)
|
||||
if np and isinstance(expected, np.ndarray):
|
||||
cls = ApproxNumpy
|
||||
elif isinstance(expected, Mapping):
|
||||
cls = ApproxMapping
|
||||
elif isinstance(expected, Sequence) and not isinstance(expected, String):
|
||||
cls = ApproxSequence
|
||||
else:
|
||||
cls = ApproxScalar
|
||||
|
||||
def __eq__(self, actual):
|
||||
from collections import Iterable
|
||||
if not isinstance(actual, Iterable):
|
||||
actual = [actual]
|
||||
if len(actual) != len(self.expected):
|
||||
return False
|
||||
return all(a == x for a, x in zip(actual, self.expected))
|
||||
|
||||
__hash__ = None
|
||||
|
||||
def __ne__(self, actual):
|
||||
return not (actual == self)
|
||||
|
||||
@property
|
||||
def expected(self):
|
||||
# Regardless of whether the user-specified expected value is a number
|
||||
# or a sequence of numbers, return a list of ApproxNotIterable objects
|
||||
# that can be compared against.
|
||||
from collections import Iterable
|
||||
approx_non_iter = lambda x: ApproxNonIterable(x, self.rel, self.abs)
|
||||
if isinstance(self._expected, Iterable):
|
||||
return [approx_non_iter(x) for x in self._expected]
|
||||
else:
|
||||
return [approx_non_iter(self._expected)]
|
||||
|
||||
@expected.setter
|
||||
def expected(self, expected):
|
||||
self._expected = expected
|
||||
|
||||
|
||||
class ApproxNonIterable(object):
|
||||
"""
|
||||
Perform approximate comparisons for single numbers only.
|
||||
|
||||
In other words, the ``expected`` attribute for objects of this class must
|
||||
be some sort of number. This is in contrast to the ``approx`` class, where
|
||||
the ``expected`` attribute can either be a number of a sequence of numbers.
|
||||
This class is responsible for making comparisons, while ``approx`` is
|
||||
responsible for abstracting the difference between numbers and sequences of
|
||||
numbers. Although this class can stand on its own, it's only meant to be
|
||||
used within ``approx``.
|
||||
"""
|
||||
|
||||
def __init__(self, expected, rel=None, abs=None):
|
||||
self.expected = expected
|
||||
self.abs = abs
|
||||
self.rel = rel
|
||||
|
||||
def __repr__(self):
|
||||
if isinstance(self.expected, complex):
|
||||
return str(self.expected)
|
||||
|
||||
# Infinities aren't compared using tolerances, so don't show a
|
||||
# tolerance.
|
||||
if math.isinf(self.expected):
|
||||
return str(self.expected)
|
||||
|
||||
# If a sensible tolerance can't be calculated, self.tolerance will
|
||||
# raise a ValueError. In this case, display '???'.
|
||||
try:
|
||||
vetted_tolerance = '{:.1e}'.format(self.tolerance)
|
||||
except ValueError:
|
||||
vetted_tolerance = '???'
|
||||
|
||||
if sys.version_info[0] == 2:
|
||||
return '{0} +- {1}'.format(self.expected, vetted_tolerance)
|
||||
else:
|
||||
return u'{0} \u00b1 {1}'.format(self.expected, vetted_tolerance)
|
||||
|
||||
def __eq__(self, actual):
|
||||
# Short-circuit exact equality.
|
||||
if actual == self.expected:
|
||||
return True
|
||||
|
||||
# Infinity shouldn't be approximately equal to anything but itself, but
|
||||
# if there's a relative tolerance, it will be infinite and infinity
|
||||
# will seem approximately equal to everything. The equal-to-itself
|
||||
# case would have been short circuited above, so here we can just
|
||||
# return false if the expected value is infinite. The abs() call is
|
||||
# for compatibility with complex numbers.
|
||||
if math.isinf(abs(self.expected)):
|
||||
return False
|
||||
|
||||
# Return true if the two numbers are within the tolerance.
|
||||
return abs(self.expected - actual) <= self.tolerance
|
||||
|
||||
__hash__ = None
|
||||
|
||||
def __ne__(self, actual):
|
||||
return not (actual == self)
|
||||
|
||||
@property
|
||||
def tolerance(self):
|
||||
set_default = lambda x, default: x if x is not None else default
|
||||
|
||||
# Figure out what the absolute tolerance should be. ``self.abs`` is
|
||||
# either None or a value specified by the user.
|
||||
absolute_tolerance = set_default(self.abs, 1e-12)
|
||||
|
||||
if absolute_tolerance < 0:
|
||||
raise ValueError("absolute tolerance can't be negative: {}".format(absolute_tolerance))
|
||||
if math.isnan(absolute_tolerance):
|
||||
raise ValueError("absolute tolerance can't be NaN.")
|
||||
|
||||
# If the user specified an absolute tolerance but not a relative one,
|
||||
# just return the absolute tolerance.
|
||||
if self.rel is None:
|
||||
if self.abs is not None:
|
||||
return absolute_tolerance
|
||||
|
||||
# Figure out what the relative tolerance should be. ``self.rel`` is
|
||||
# either None or a value specified by the user. This is done after
|
||||
# we've made sure the user didn't ask for an absolute tolerance only,
|
||||
# because we don't want to raise errors about the relative tolerance if
|
||||
# we aren't even going to use it.
|
||||
relative_tolerance = set_default(self.rel, 1e-6) * abs(self.expected)
|
||||
|
||||
if relative_tolerance < 0:
|
||||
raise ValueError("relative tolerance can't be negative: {}".format(absolute_tolerance))
|
||||
if math.isnan(relative_tolerance):
|
||||
raise ValueError("relative tolerance can't be NaN.")
|
||||
|
||||
# Return the larger of the relative and absolute tolerances.
|
||||
return max(relative_tolerance, absolute_tolerance)
|
||||
return cls(expected, rel, abs)
|
||||
|
||||
|
||||
#
|
||||
|
|
|
@ -9,7 +9,6 @@ from decimal import Decimal
|
|||
from fractions import Fraction
|
||||
inf, nan = float('inf'), float('nan')
|
||||
|
||||
|
||||
class MyDocTestRunner(doctest.DocTestRunner):
|
||||
|
||||
def __init__(self):
|
||||
|
@ -29,12 +28,19 @@ class TestApprox(object):
|
|||
if sys.version_info[:2] == (2, 6):
|
||||
tol1, tol2, infr = '???', '???', '???'
|
||||
assert repr(approx(1.0)) == '1.0 {pm} {tol1}'.format(pm=plus_minus, tol1=tol1)
|
||||
assert repr(approx([1.0, 2.0])) == '1.0 {pm} {tol1}, 2.0 {pm} {tol2}'.format(pm=plus_minus, tol1=tol1, tol2=tol2)
|
||||
assert repr(approx([1.0, 2.0])) == '[1.0 {pm} {tol1}, 2.0 {pm} {tol2}]'.format(pm=plus_minus, tol1=tol1, tol2=tol2)
|
||||
assert repr(approx((1.0, 2.0))) == '(1.0 {pm} {tol1}, 2.0 {pm} {tol2})'.format(pm=plus_minus, tol1=tol1, tol2=tol2)
|
||||
assert repr(approx(inf)) == 'inf'
|
||||
assert repr(approx(1.0, rel=nan)) == '1.0 {pm} ???'.format(pm=plus_minus)
|
||||
assert repr(approx(1.0, rel=inf)) == '1.0 {pm} {infr}'.format(pm=plus_minus, infr=infr)
|
||||
assert repr(approx(1.0j, rel=inf)) == '1j'
|
||||
|
||||
# Dictionaries aren't ordered, so we need to check both orders.
|
||||
assert repr(approx({'a': 1.0, 'b': 2.0})) in (
|
||||
"{{'a': 1.0 {pm} {tol1}, 'b': 2.0 {pm} {tol2}}}".format(pm=plus_minus, tol1=tol1, tol2=tol2),
|
||||
"{{'b': 2.0 {pm} {tol2}, 'a': 1.0 {pm} {tol1}}}".format(pm=plus_minus, tol1=tol1, tol2=tol2),
|
||||
)
|
||||
|
||||
def test_operator_overloading(self):
|
||||
assert 1 == approx(1, rel=1e-6, abs=1e-12)
|
||||
assert not (1 != approx(1, rel=1e-6, abs=1e-12))
|
||||
|
@ -228,18 +234,38 @@ class TestApprox(object):
|
|||
# tolerance, so only an absolute tolerance is calculated.
|
||||
assert a != approx(x, abs=inf)
|
||||
|
||||
def test_expecting_sequence(self):
|
||||
within_1e8 = [
|
||||
(1e8 + 1e0, 1e8),
|
||||
(1e0 + 1e-8, 1e0),
|
||||
(1e-8 + 1e-16, 1e-8),
|
||||
def test_int(self):
|
||||
within_1e6 = [
|
||||
(1000001, 1000000),
|
||||
(-1000001, -1000000),
|
||||
]
|
||||
actual, expected = zip(*within_1e8)
|
||||
assert actual == approx(expected, rel=5e-8, abs=0.0)
|
||||
for a, x in within_1e6:
|
||||
assert a == approx(x, rel=5e-6, abs=0)
|
||||
assert a != approx(x, rel=5e-7, abs=0)
|
||||
assert approx(x, rel=5e-6, abs=0) == a
|
||||
assert approx(x, rel=5e-7, abs=0) != a
|
||||
|
||||
def test_expecting_sequence_wrong_len(self):
|
||||
assert [1, 2] != approx([1])
|
||||
assert [1, 2] != approx([1,2,3])
|
||||
def test_decimal(self):
|
||||
within_1e6 = [
|
||||
(Decimal('1.000001'), Decimal('1.0')),
|
||||
(Decimal('-1.000001'), Decimal('-1.0')),
|
||||
]
|
||||
for a, x in within_1e6:
|
||||
assert a == approx(x, rel=Decimal('5e-6'), abs=0)
|
||||
assert a != approx(x, rel=Decimal('5e-7'), abs=0)
|
||||
assert approx(x, rel=Decimal('5e-6'), abs=0) == a
|
||||
assert approx(x, rel=Decimal('5e-7'), abs=0) != a
|
||||
|
||||
def test_fraction(self):
|
||||
within_1e6 = [
|
||||
(1 + Fraction(1, 1000000), Fraction(1)),
|
||||
(-1 - Fraction(-1, 1000000), Fraction(-1)),
|
||||
]
|
||||
for a, x in within_1e6:
|
||||
assert a == approx(x, rel=5e-6, abs=0)
|
||||
assert a != approx(x, rel=5e-7, abs=0)
|
||||
assert approx(x, rel=5e-6, abs=0) == a
|
||||
assert approx(x, rel=5e-7, abs=0) != a
|
||||
|
||||
def test_complex(self):
|
||||
within_1e6 = [
|
||||
|
@ -251,33 +277,86 @@ class TestApprox(object):
|
|||
for a, x in within_1e6:
|
||||
assert a == approx(x, rel=5e-6, abs=0)
|
||||
assert a != approx(x, rel=5e-7, abs=0)
|
||||
assert approx(x, rel=5e-6, abs=0) == a
|
||||
assert approx(x, rel=5e-7, abs=0) != a
|
||||
|
||||
def test_int(self):
|
||||
within_1e6 = [
|
||||
(1000001, 1000000),
|
||||
(-1000001, -1000000),
|
||||
]
|
||||
for a, x in within_1e6:
|
||||
assert a == approx(x, rel=5e-6, abs=0)
|
||||
assert a != approx(x, rel=5e-7, abs=0)
|
||||
def test_list(self):
|
||||
actual = [1 + 1e-7, 2 + 1e-8]
|
||||
expected = [1, 2]
|
||||
|
||||
def test_decimal(self):
|
||||
within_1e6 = [
|
||||
(Decimal('1.000001'), Decimal('1.0')),
|
||||
(Decimal('-1.000001'), Decimal('-1.0')),
|
||||
]
|
||||
for a, x in within_1e6:
|
||||
assert a == approx(x, rel=Decimal('5e-6'), abs=0)
|
||||
assert a != approx(x, rel=Decimal('5e-7'), abs=0)
|
||||
# Return false if any element is outside the tolerance.
|
||||
assert actual == approx(expected, rel=5e-7, abs=0)
|
||||
assert actual != approx(expected, rel=5e-8, abs=0)
|
||||
assert approx(expected, rel=5e-7, abs=0) == actual
|
||||
assert approx(expected, rel=5e-8, abs=0) != actual
|
||||
|
||||
def test_fraction(self):
|
||||
within_1e6 = [
|
||||
(1 + Fraction(1, 1000000), Fraction(1)),
|
||||
(-1 - Fraction(-1, 1000000), Fraction(-1)),
|
||||
]
|
||||
for a, x in within_1e6:
|
||||
assert a == approx(x, rel=5e-6, abs=0)
|
||||
assert a != approx(x, rel=5e-7, abs=0)
|
||||
def test_list_wrong_len(self):
|
||||
assert [1, 2] != approx([1])
|
||||
assert [1, 2] != approx([1,2,3])
|
||||
|
||||
def test_tuple(self):
|
||||
actual = (1 + 1e-7, 2 + 1e-8)
|
||||
expected = (1, 2)
|
||||
|
||||
# Return false if any element is outside the tolerance.
|
||||
assert actual == approx(expected, rel=5e-7, abs=0)
|
||||
assert actual != approx(expected, rel=5e-8, abs=0)
|
||||
assert approx(expected, rel=5e-7, abs=0) == actual
|
||||
assert approx(expected, rel=5e-8, abs=0) != actual
|
||||
|
||||
def test_tuple_wrong_len(self):
|
||||
assert (1, 2) != approx((1,))
|
||||
assert (1, 2) != approx((1,2,3))
|
||||
|
||||
def test_dict(self):
|
||||
actual = {'a': 1 + 1e-7, 'b': 2 + 1e-8}
|
||||
expected = {'b': 2, 'a': 1} # Dictionaries became ordered in python3.6,
|
||||
# so make sure the order doesn't matter
|
||||
|
||||
# Return false if any element is outside the tolerance.
|
||||
assert actual == approx(expected, rel=5e-7, abs=0)
|
||||
assert actual != approx(expected, rel=5e-8, abs=0)
|
||||
assert approx(expected, rel=5e-7, abs=0) == actual
|
||||
assert approx(expected, rel=5e-8, abs=0) != actual
|
||||
|
||||
def test_dict_wrong_len(self):
|
||||
assert {'a': 1, 'b': 2} != approx({'a': 1})
|
||||
assert {'a': 1, 'b': 2} != approx({'a': 1, 'c': 2})
|
||||
assert {'a': 1, 'b': 2} != approx({'a': 1, 'b': 2, 'c': 3})
|
||||
|
||||
def test_numpy_array(self):
|
||||
try:
|
||||
import numpy as np
|
||||
except ImportError:
|
||||
pytest.skip("numpy not installed")
|
||||
|
||||
actual = np.array([1 + 1e-7, 2 + 1e-8])
|
||||
expected = np.array([1, 2])
|
||||
|
||||
# Return false if any element is outside the tolerance.
|
||||
assert actual == approx(expected, rel=5e-7, abs=0)
|
||||
assert actual != approx(expected, rel=5e-8, abs=0)
|
||||
assert approx(expected, rel=5e-7, abs=0) == expected
|
||||
assert approx(expected, rel=5e-8, abs=0) != actual
|
||||
|
||||
def test_numpy_array_wrong_shape(self):
|
||||
try:
|
||||
import numpy as np
|
||||
except ImportError:
|
||||
pytest.skip("numpy not installed")
|
||||
|
||||
import numpy as np
|
||||
a12 = np.array([[1, 2]])
|
||||
a21 = np.array([[1],[2]])
|
||||
|
||||
assert a12 != approx(a21)
|
||||
assert a21 != approx(a12)
|
||||
|
||||
def test_non_number(self):
|
||||
with pytest.raises(ValueError):
|
||||
1 == approx("1")
|
||||
with pytest.raises(ValueError):
|
||||
"1" == approx(1)
|
||||
|
||||
def test_doctests(self):
|
||||
parser = doctest.DocTestParser()
|
||||
|
|
Loading…
Reference in New Issue