.. _paramexamples: Parametrizing tests ================================================= ``pytest`` allows to easily parametrize test functions. For basic docs, see :ref:`parametrize-basics`. In the following we provide some examples using the builtin mechanisms. Generating parameters combinations, depending on command line ---------------------------------------------------------------------------- .. regendoc:wipe Let's say we want to execute a test with different computation parameters and the parameter range shall be determined by a command line argument. Let's first write a simple (do-nothing) computation test: .. code-block:: python # content of test_compute.py def test_compute(param1): assert param1 < 4 Now we add a test configuration like this: .. code-block:: python # content of conftest.py def pytest_addoption(parser): parser.addoption("--all", action="store_true", help="run all combinations") def pytest_generate_tests(metafunc): if "param1" in metafunc.fixturenames: if metafunc.config.getoption("all"): end = 5 else: end = 2 metafunc.parametrize("param1", range(end)) This means that we only run 2 tests if we do not pass ``--all``: .. code-block:: pytest $ pytest -q test_compute.py .. [100%] 2 passed in 0.12s We run only two computations, so we see two dots. let's run the full monty: .. code-block:: pytest $ pytest -q --all ....F [100%] ================================= FAILURES ================================= _____________________________ test_compute[4] ______________________________ param1 = 4 def test_compute(param1): > assert param1 < 4 E assert 4 < 4 test_compute.py:4: AssertionError ========================= short test summary info ========================== FAILED test_compute.py::test_compute[4] - assert 4 < 4 1 failed, 4 passed in 0.12s As expected when running the full range of ``param1`` values we'll get an error on the last one. Different options for test IDs ------------------------------------ pytest will build a string that is the test ID for each set of values in a parametrized test. These IDs can be used with ``-k`` to select specific cases to run, and they will also identify the specific case when one is failing. Running pytest with ``--collect-only`` will show the generated IDs. Numbers, strings, booleans and None will have their usual string representation used in the test ID. For other objects, pytest will make a string based on the argument name: .. code-block:: python # content of test_time.py from datetime import datetime, timedelta import pytest testdata = [ (datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1)), (datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1)), ] @pytest.mark.parametrize("a,b,expected", testdata) def test_timedistance_v0(a, b, expected): diff = a - b assert diff == expected @pytest.mark.parametrize("a,b,expected", testdata, ids=["forward", "backward"]) def test_timedistance_v1(a, b, expected): diff = a - b assert diff == expected def idfn(val): if isinstance(val, (datetime,)): # note this wouldn't show any hours/minutes/seconds return val.strftime("%Y%m%d") @pytest.mark.parametrize("a,b,expected", testdata, ids=idfn) def test_timedistance_v2(a, b, expected): diff = a - b assert diff == expected @pytest.mark.parametrize( "a,b,expected", [ pytest.param( datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1), id="forward" ), pytest.param( datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1), id="backward" ), ], ) def test_timedistance_v3(a, b, expected): diff = a - b assert diff == expected In ``test_timedistance_v0``, we let pytest generate the test IDs. In ``test_timedistance_v1``, we specified ``ids`` as a list of strings which were used as the test IDs. These are succinct, but can be a pain to maintain. In ``test_timedistance_v2``, we specified ``ids`` as a function that can generate a string representation to make part of the test ID. So our ``datetime`` values use the label generated by ``idfn``, but because we didn't generate a label for ``timedelta`` objects, they are still using the default pytest representation: .. code-block:: pytest $ pytest test_time.py --collect-only =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-7.x.y, pluggy-1.x.y rootdir: /home/sweet/project collected 8 items ======================== 8 tests collected in 0.12s ======================== In ``test_timedistance_v3``, we used ``pytest.param`` to specify the test IDs together with the actual data, instead of listing them separately. A quick port of "testscenarios" ------------------------------------ Here is a quick port to run tests configured with :pypi:`testscenarios`, an add-on from Robert Collins for the standard unittest framework. We only have to work a bit to construct the correct arguments for pytest's :py:func:`Metafunc.parametrize `: .. code-block:: python # content of test_scenarios.py def pytest_generate_tests(metafunc): idlist = [] argvalues = [] for scenario in metafunc.cls.scenarios: idlist.append(scenario[0]) items = scenario[1].items() argnames = [x[0] for x in items] argvalues.append([x[1] for x in items]) metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class") scenario1 = ("basic", {"attribute": "value"}) scenario2 = ("advanced", {"attribute": "value2"}) class TestSampleWithScenarios: scenarios = [scenario1, scenario2] def test_demo1(self, attribute): assert isinstance(attribute, str) def test_demo2(self, attribute): assert isinstance(attribute, str) this is a fully self-contained example which you can run with: .. code-block:: pytest $ pytest test_scenarios.py =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-7.x.y, pluggy-1.x.y rootdir: /home/sweet/project collected 4 items test_scenarios.py .... [100%] ============================ 4 passed in 0.12s ============================= If you just collect tests you'll also nicely see 'advanced' and 'basic' as variants for the test function: .. code-block:: pytest $ pytest --collect-only test_scenarios.py =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-7.x.y, pluggy-1.x.y rootdir: /home/sweet/project collected 4 items ======================== 4 tests collected in 0.12s ======================== Note that we told ``metafunc.parametrize()`` that your scenario values should be considered class-scoped. With pytest-2.3 this leads to a resource-based ordering. Deferring the setup of parametrized resources --------------------------------------------------- .. regendoc:wipe The parametrization of test functions happens at collection time. It is a good idea to setup expensive resources like DB connections or subprocess only when the actual test is run. Here is a simple example how you can achieve that. This test requires a ``db`` object fixture: .. code-block:: python # content of test_backends.py import pytest def test_db_initialized(db): # a dummy test if db.__class__.__name__ == "DB2": pytest.fail("deliberately failing for demo purposes") We can now add a test configuration that generates two invocations of the ``test_db_initialized`` function and also implements a factory that creates a database object for the actual test invocations: .. code-block:: python # content of conftest.py import pytest def pytest_generate_tests(metafunc): if "db" in metafunc.fixturenames: metafunc.parametrize("db", ["d1", "d2"], indirect=True) class DB1: "one database object" class DB2: "alternative database object" @pytest.fixture def db(request): if request.param == "d1": return DB1() elif request.param == "d2": return DB2() else: raise ValueError("invalid internal test config") Let's first see how it looks like at collection time: .. code-block:: pytest $ pytest test_backends.py --collect-only =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-7.x.y, pluggy-1.x.y rootdir: /home/sweet/project collected 2 items ======================== 2 tests collected in 0.12s ======================== And then when we run the test: .. code-block:: pytest $ pytest -q test_backends.py .F [100%] ================================= FAILURES ================================= _________________________ test_db_initialized[d2] __________________________ db = def test_db_initialized(db): # a dummy test if db.__class__.__name__ == "DB2": > pytest.fail("deliberately failing for demo purposes") E Failed: deliberately failing for demo purposes test_backends.py:8: Failed ========================= short test summary info ========================== FAILED test_backends.py::test_db_initialized[d2] - Failed: deliberately f... 1 failed, 1 passed in 0.12s The first invocation with ``db == "DB1"`` passed while the second with ``db == "DB2"`` failed. Our ``db`` fixture function has instantiated each of the DB values during the setup phase while the ``pytest_generate_tests`` generated two according calls to the ``test_db_initialized`` during the collection phase. Indirect parametrization --------------------------------------------------- Using the ``indirect=True`` parameter when parametrizing a test allows to parametrize a test with a fixture receiving the values before passing them to a test: .. code-block:: python import pytest @pytest.fixture def fixt(request): return request.param * 3 @pytest.mark.parametrize("fixt", ["a", "b"], indirect=True) def test_indirect(fixt): assert len(fixt) == 3 This can be used, for example, to do more expensive setup at test run time in the fixture, rather than having to run those setup steps at collection time. .. regendoc:wipe Apply indirect on particular arguments --------------------------------------------------- Very often parametrization uses more than one argument name. There is opportunity to apply ``indirect`` parameter on particular arguments. It can be done by passing list or tuple of arguments' names to ``indirect``. In the example below there is a function ``test_indirect`` which uses two fixtures: ``x`` and ``y``. Here we give to indirect the list, which contains the name of the fixture ``x``. The indirect parameter will be applied to this argument only, and the value ``a`` will be passed to respective fixture function: .. code-block:: python # content of test_indirect_list.py import pytest @pytest.fixture(scope="function") def x(request): return request.param * 3 @pytest.fixture(scope="function") def y(request): return request.param * 2 @pytest.mark.parametrize("x, y", [("a", "b")], indirect=["x"]) def test_indirect(x, y): assert x == "aaa" assert y == "b" The result of this test will be successful: .. code-block:: pytest $ pytest -v test_indirect_list.py =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-7.x.y, pluggy-1.x.y -- $PYTHON_PREFIX/bin/python cachedir: .pytest_cache rootdir: /home/sweet/project collecting ... collected 1 item test_indirect_list.py::test_indirect[a-b] PASSED [100%] ============================ 1 passed in 0.12s ============================= .. regendoc:wipe Parametrizing test methods through per-class configuration -------------------------------------------------------------- .. _`unittest parametrizer`: https://github.com/testing-cabal/unittest-ext/blob/master/params.py Here is an example ``pytest_generate_tests`` function implementing a parametrization scheme similar to Michael Foord's `unittest parametrizer`_ but in a lot less code: .. code-block:: python # content of ./test_parametrize.py import pytest def pytest_generate_tests(metafunc): # called once per each test function funcarglist = metafunc.cls.params[metafunc.function.__name__] argnames = sorted(funcarglist[0]) metafunc.parametrize( argnames, [[funcargs[name] for name in argnames] for funcargs in funcarglist] ) class TestClass: # a map specifying multiple argument sets for a test method params = { "test_equals": [dict(a=1, b=2), dict(a=3, b=3)], "test_zerodivision": [dict(a=1, b=0)], } def test_equals(self, a, b): assert a == b def test_zerodivision(self, a, b): with pytest.raises(ZeroDivisionError): a / b Our test generator looks up a class-level definition which specifies which argument sets to use for each test function. Let's run it: .. code-block:: pytest $ pytest -q F.. [100%] ================================= FAILURES ================================= ________________________ TestClass.test_equals[1-2] ________________________ self = , a = 1, b = 2 def test_equals(self, a, b): > assert a == b E assert 1 == 2 test_parametrize.py:21: AssertionError ========================= short test summary info ========================== FAILED test_parametrize.py::TestClass::test_equals[1-2] - assert 1 == 2 1 failed, 2 passed in 0.12s Parametrization with multiple fixtures -------------------------------------- Here is a stripped down real-life example of using parametrized testing for testing serialization of objects between different python interpreters. We define a ``test_basic_objects`` function which is to be run with different sets of arguments for its three arguments: * ``python1``: first python interpreter, run to pickle-dump an object to a file * ``python2``: second interpreter, run to pickle-load an object from a file * ``obj``: object to be dumped/loaded .. literalinclude:: multipython.py Running it results in some skips if we don't have all the python interpreters installed and otherwise runs all combinations (3 interpreters times 3 interpreters times 3 objects to serialize/deserialize): .. code-block:: pytest . $ pytest -rs -q multipython.py sssssssssssssssssssssssssss [100%] ========================= short test summary info ========================== SKIPPED [9] multipython.py:69: 'python3.5' not found SKIPPED [9] multipython.py:69: 'python3.6' not found SKIPPED [9] multipython.py:69: 'python3.7' not found 27 skipped in 0.12s Parametrization of optional implementations/imports --------------------------------------------------- If you want to compare the outcomes of several implementations of a given API, you can write test functions that receive the already imported implementations and get skipped in case the implementation is not importable/available. Let's say we have a "base" implementation and the other (possibly optimized ones) need to provide similar results: .. code-block:: python # content of conftest.py import pytest @pytest.fixture(scope="session") def basemod(request): return pytest.importorskip("base") @pytest.fixture(scope="session", params=["opt1", "opt2"]) def optmod(request): return pytest.importorskip(request.param) And then a base implementation of a simple function: .. code-block:: python # content of base.py def func1(): return 1 And an optimized version: .. code-block:: python # content of opt1.py def func1(): return 1.0001 And finally a little test module: .. code-block:: python # content of test_module.py def test_func1(basemod, optmod): assert round(basemod.func1(), 3) == round(optmod.func1(), 3) If you run this with reporting for skips enabled: .. code-block:: pytest $ pytest -rs test_module.py =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-7.x.y, pluggy-1.x.y rootdir: /home/sweet/project collected 2 items test_module.py .s [100%] ========================= short test summary info ========================== SKIPPED [1] test_module.py:3: could not import 'opt2': No module named 'opt2' ======================= 1 passed, 1 skipped in 0.12s ======================= You'll see that we don't have an ``opt2`` module and thus the second test run of our ``test_func1`` was skipped. A few notes: - the fixture functions in the ``conftest.py`` file are "session-scoped" because we don't need to import more than once - if you have multiple test functions and a skipped import, you will see the ``[1]`` count increasing in the report - you can put :ref:`@pytest.mark.parametrize <@pytest.mark.parametrize>` style parametrization on the test functions to parametrize input/output values as well. Set marks or test ID for individual parametrized test -------------------------------------------------------------------- Use ``pytest.param`` to apply marks or set test ID to individual parametrized test. For example: .. code-block:: python # content of test_pytest_param_example.py import pytest @pytest.mark.parametrize( "test_input,expected", [ ("3+5", 8), pytest.param("1+7", 8, marks=pytest.mark.basic), pytest.param("2+4", 6, marks=pytest.mark.basic, id="basic_2+4"), pytest.param( "6*9", 42, marks=[pytest.mark.basic, pytest.mark.xfail], id="basic_6*9" ), ], ) def test_eval(test_input, expected): assert eval(test_input) == expected In this example, we have 4 parametrized tests. Except for the first test, we mark the rest three parametrized tests with the custom marker ``basic``, and for the fourth test we also use the built-in mark ``xfail`` to indicate this test is expected to fail. For explicitness, we set test ids for some tests. Then run ``pytest`` with verbose mode and with only the ``basic`` marker: .. code-block:: pytest $ pytest -v -m basic =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-7.x.y, pluggy-1.x.y -- $PYTHON_PREFIX/bin/python cachedir: .pytest_cache rootdir: /home/sweet/project collecting ... collected 24 items / 21 deselected / 3 selected test_pytest_param_example.py::test_eval[1+7-8] PASSED [ 33%] test_pytest_param_example.py::test_eval[basic_2+4] PASSED [ 66%] test_pytest_param_example.py::test_eval[basic_6*9] XFAIL [100%] =============== 2 passed, 21 deselected, 1 xfailed in 0.12s ================ As the result: - Four tests were collected - One test was deselected because it doesn't have the ``basic`` mark. - Three tests with the ``basic`` mark was selected. - The test ``test_eval[1+7-8]`` passed, but the name is autogenerated and confusing. - The test ``test_eval[basic_2+4]`` passed. - The test ``test_eval[basic_6*9]`` was expected to fail and did fail. .. _`parametrizing_conditional_raising`: Parametrizing conditional raising -------------------------------------------------------------------- Use :func:`pytest.raises` with the :ref:`pytest.mark.parametrize ref` decorator to write parametrized tests in which some tests raise exceptions and others do not. ``contextlib.nullcontext`` can be used to test cases that are not expected to raise exceptions but that should result in some value. The value is given as the ``enter_result`` parameter, which will be available as the ``with`` statement’s target (``e`` in the example below). For example: .. code-block:: python from contextlib import nullcontext import pytest @pytest.mark.parametrize( "example_input,expectation", [ (3, nullcontext(2)), (2, nullcontext(3)), (1, nullcontext(6)), (0, pytest.raises(ZeroDivisionError)), ], ) def test_division(example_input, expectation): """Test how much I know division.""" with expectation as e: assert (6 / example_input) == e In the example above, the first three test cases should run without any exceptions, while the fourth should raise a``ZeroDivisionError`` exception, which is expected by pytest.