.. _`test generators`:
.. _`parametrizing-tests`:
.. _`parametrized test functions`:
.. _`parametrize`:

.. _`parametrize-basics`:

Parametrizing fixtures and test functions
==========================================================================

pytest enables test parametrization at several levels:

- :py:func:`pytest.fixture` allows one to :ref:`parametrize fixture
  functions <fixture-parametrize>`.

* `@pytest.mark.parametrize`_ allows one to define multiple sets of
  arguments and fixtures at the test function or class.

* `pytest_generate_tests`_ allows one to define custom parametrization
  schemes or extensions.

.. _parametrizemark:
.. _`@pytest.mark.parametrize`:


``@pytest.mark.parametrize``: parametrizing test functions
---------------------------------------------------------------------

.. regendoc: wipe

.. versionadded:: 2.2
.. versionchanged:: 2.4
    Several improvements.

The builtin :ref:`pytest.mark.parametrize ref` decorator enables
parametrization of arguments for a test function.  Here is a typical example
of a test function that implements checking that a certain input leads
to an expected output::

    # content of test_expectation.py
    import pytest
    @pytest.mark.parametrize("test_input,expected", [
        ("3+5", 8),
        ("2+4", 6),
        ("6*9", 42),
    ])
    def test_eval(test_input, expected):
        assert eval(test_input) == expected

Here, the ``@parametrize`` decorator defines three different ``(test_input,expected)``
tuples so that the ``test_eval`` function will run three times using
them in turn::

    $ pytest
    =========================== test session starts ============================
    platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
    rootdir: $REGENDOC_TMPDIR, inifile:
    collected 3 items

    test_expectation.py ..F                                              [100%]

    ================================= FAILURES =================================
    ____________________________ test_eval[6*9-42] _____________________________

    test_input = '6*9', expected = 42

        @pytest.mark.parametrize("test_input,expected", [
            ("3+5", 8),
            ("2+4", 6),
            ("6*9", 42),
        ])
        def test_eval(test_input, expected):
    >       assert eval(test_input) == expected
    E       AssertionError: assert 54 == 42
    E        +  where 54 = eval('6*9')

    test_expectation.py:8: AssertionError
    ==================== 1 failed, 2 passed in 0.12 seconds ====================

As designed in this example, only one pair of input/output values fails
the simple test function.  And as usual with test function arguments,
you can see the ``input`` and ``output`` values in the traceback.

Note that you could also use the parametrize marker on a class or a module
(see :ref:`mark`) which would invoke several functions with the argument sets.

It is also possible to mark individual test instances within parametrize,
for example with the builtin ``mark.xfail``::

    # content of test_expectation.py
    import pytest
    @pytest.mark.parametrize("test_input,expected", [
        ("3+5", 8),
        ("2+4", 6),
        pytest.param("6*9", 42,
                     marks=pytest.mark.xfail),
    ])
    def test_eval(test_input, expected):
        assert eval(test_input) == expected

Let's run this::

    $ pytest
    =========================== test session starts ============================
    platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
    rootdir: $REGENDOC_TMPDIR, inifile:
    collected 3 items

    test_expectation.py ..x                                              [100%]

    =================== 2 passed, 1 xfailed in 0.12 seconds ====================

The one parameter set which caused a failure previously now
shows up as an "xfailed (expected to fail)" test.

To get all combinations of multiple parametrized arguments you can stack
``parametrize`` decorators::

    import pytest
    @pytest.mark.parametrize("x", [0, 1])
    @pytest.mark.parametrize("y", [2, 3])
    def test_foo(x, y):
        pass

This will run the test with the arguments set to ``x=0/y=2``, ``x=1/y=2``,
``x=0/y=3``, and ``x=1/y=3`` exhausting parameters in the order of the decorators.

.. _`pytest_generate_tests`:

Basic ``pytest_generate_tests`` example
---------------------------------------------

Sometimes you may want to implement your own parametrization scheme
or implement some dynamism for determining the parameters or scope
of a fixture.   For this, you can use the ``pytest_generate_tests`` hook
which is called when collecting a test function.  Through the passed in
``metafunc`` object you can inspect the requesting test context and, most
importantly, you can call ``metafunc.parametrize()`` to cause
parametrization.

For example, let's say we want to run a test taking string inputs which
we want to set via a new ``pytest`` command line option.  Let's first write
a simple test accepting a ``stringinput`` fixture function argument::

    # content of test_strings.py

    def test_valid_string(stringinput):
        assert stringinput.isalpha()

Now we add a ``conftest.py`` file containing the addition of a
command line option and the parametrization of our test function::

    # content of conftest.py

    def pytest_addoption(parser):
        parser.addoption("--stringinput", action="append", default=[],
            help="list of stringinputs to pass to test functions")

    def pytest_generate_tests(metafunc):
        if 'stringinput' in metafunc.fixturenames:
            metafunc.parametrize("stringinput",
                                 metafunc.config.getoption('stringinput'))

If we now pass two stringinput values, our test will run twice::

    $ pytest -q --stringinput="hello" --stringinput="world" test_strings.py
    ..                                                                   [100%]
    2 passed in 0.12 seconds

Let's also run with a stringinput that will lead to a failing test::

    $ pytest -q --stringinput="!" test_strings.py
    F                                                                    [100%]
    ================================= FAILURES =================================
    ___________________________ test_valid_string[!] ___________________________

    stringinput = '!'

        def test_valid_string(stringinput):
    >       assert stringinput.isalpha()
    E       AssertionError: assert False
    E        +  where False = <built-in method isalpha of str object at 0xdeadbeef>()
    E        +    where <built-in method isalpha of str object at 0xdeadbeef> = '!'.isalpha

    test_strings.py:3: AssertionError
    1 failed in 0.12 seconds

As expected our test function fails.

If you don't specify a stringinput it will be skipped because
``metafunc.parametrize()`` will be called with an empty parameter
list::

    $ pytest -q -rs test_strings.py
    s                                                                    [100%]
    ========================= short test summary info ==========================
    SKIP [1] test_strings.py: got empty parameter set ['stringinput'], function test_valid_string at $REGENDOC_TMPDIR/test_strings.py:1
    1 skipped in 0.12 seconds

Note that when calling ``metafunc.parametrize`` multiple times with different parameter sets, all parameter names across
those sets cannot be duplicated, otherwise an error will be raised.

More examples
-------------

For further examples, you might want to look at :ref:`more
parametrization examples <paramexamples>`.