.. _paramexamples: parametrizing tests ================================================= py.test allows to easily implement your own custom parametrization scheme for tests. Here we provide some examples for inspiration and re-use. generating parameters combinations, depending on command line ---------------------------------------------------------------------------- .. regendoc:wipe Let's say we want to execute a test with different parameters and the parameter range shall be determined by a command line argument. Let's first write a simple computation test:: # content of test_compute.py def test_compute(param1): assert param1 < 4 Now we add a test configuration like this:: # content of conftest.py def pytest_addoption(parser): parser.addoption("--all", action="store_true", help="run all combinations") def pytest_generate_tests(metafunc): if 'param1' in metafunc.funcargnames: if metafunc.config.option.all: end = 5 else: end = 2 for i in range(end): metafunc.addcall(funcargs={'param1': i}) This means that we only run 2 tests if we do not pass ``--all``:: $ py.test -q test_compute.py collecting ... collected 2 items .. 2 passed in 0.01 seconds We run only two computations, so we see two dots. let's run the full monty:: $ py.test -q --all collecting ... collected 5 items ....F ================================= FAILURES ================================= _____________________________ test_compute[4] ______________________________ param1 = 4 def test_compute(param1): > assert param1 < 4 E assert 4 < 4 test_compute.py:3: AssertionError 1 failed, 4 passed in 0.03 seconds As expected when running the full range of ``param1`` values we'll get an error on the last one. Deferring the setup of parametrizing resources --------------------------------------------------- .. regendoc:wipe The parametrization of test functions happens at collection time. It is often a good idea to setup possibly expensive resources only when the actual test is run. Here is a simple example how you can achieve that:: # content of test_backends.py import pytest def test_db_initialized(db): # a dummy test if db.__class__.__name__ == "DB2": pytest.fail("deliberately failing for demo purposes") Now we add a test configuration that takes care to generate two invocations of the ``test_db_initialized`` function and furthermore a factory that creates a database object when each test is actually run:: # content of conftest.py def pytest_generate_tests(metafunc): if 'db' in metafunc.funcargnames: metafunc.addcall(param="d1") metafunc.addcall(param="d2") class DB1: "one database object" class DB2: "alternative database object" def pytest_funcarg__db(request): if request.param == "d1": return DB1() elif request.param == "d2": return DB2() else: raise ValueError("invalid internal test config") Let's first see how it looks like at collection time:: $ py.test test_backends.py --collectonly =========================== test session starts ============================ platform linux2 -- Python 2.6.6 -- pytest-2.0.3 collecting ... collected 2 items ============================= in 0.01 seconds ============================= And then when we run the test:: $ py.test -q test_backends.py collecting ... collected 2 items .F ================================= FAILURES ================================= __________________________ test_db_initialized[1] __________________________ db = def test_db_initialized(db): # a dummy test if db.__class__.__name__ == "DB2": > pytest.fail("deliberately failing for demo purposes") E Failed: deliberately failing for demo purposes test_backends.py:6: Failed 1 failed, 1 passed in 0.03 seconds Now you see that one invocation of the test passes and another fails, as it to be expected. Parametrizing test methods through per-class configuration -------------------------------------------------------------- .. _`unittest parameterizer`: http://code.google.com/p/unittest-ext/source/browse/trunk/params.py Here is an example ``pytest_generate_function`` function implementing a parametrization scheme similar to Michael Foords `unittest parameterizer`_ in a lot less code:: # content of ./test_parametrize.py import pytest def pytest_generate_tests(metafunc): # called once per each test function for funcargs in metafunc.cls.params[metafunc.function.__name__]: # schedule a new test function run with applied **funcargs metafunc.addcall(funcargs=funcargs) class TestClass: # a map specifying multiple argument sets for a test method params = { 'test_equals': [dict(a=1, b=2), dict(a=3, b=3), ], 'test_zerodivision': [dict(a=1, b=0), dict(a=3, b=2)], } def test_equals(self, a, b): assert a == b def test_zerodivision(self, a, b): pytest.raises(ZeroDivisionError, "a/b") Running it means we are two tests for each test functions, using the respective settings:: $ py.test -q collecting ... collected 6 items .FF..F ================================= FAILURES ================================= __________________________ test_db_initialized[1] __________________________ db = def test_db_initialized(db): # a dummy test if db.__class__.__name__ == "DB2": > pytest.fail("deliberately failing for demo purposes") E Failed: deliberately failing for demo purposes test_backends.py:6: Failed _________________________ TestClass.test_equals[0] _________________________ self = , a = 1, b = 2 def test_equals(self, a, b): > assert a == b E assert 1 == 2 test_parametrize.py:17: AssertionError ______________________ TestClass.test_zerodivision[1] ______________________ self = , a = 3, b = 2 def test_zerodivision(self, a, b): > pytest.raises(ZeroDivisionError, "a/b") E Failed: DID NOT RAISE test_parametrize.py:20: Failed 3 failed, 3 passed in 0.05 seconds Parametrizing test methods through a decorator -------------------------------------------------------------- Modifying the previous example we can also allow decorators for parametrizing test methods:: # content of test_parametrize2.py import pytest # test support code def params(funcarglist): def wrapper(function): function.funcarglist = funcarglist return function return wrapper def pytest_generate_tests(metafunc): for funcargs in getattr(metafunc.function, 'funcarglist', ()): metafunc.addcall(funcargs=funcargs) # actual test code class TestClass: @params([dict(a=1, b=2), dict(a=3, b=3), ]) def test_equals(self, a, b): assert a == b @params([dict(a=1, b=0), dict(a=3, b=2)]) def test_zerodivision(self, a, b): pytest.raises(ZeroDivisionError, "a/b") Running it gives similar results as before:: $ py.test -q test_parametrize2.py collecting ... collected 4 items F..F ================================= FAILURES ================================= _________________________ TestClass.test_equals[0] _________________________ self = , a = 1, b = 2 @params([dict(a=1, b=2), dict(a=3, b=3), ]) def test_equals(self, a, b): > assert a == b E assert 1 == 2 test_parametrize2.py:19: AssertionError ______________________ TestClass.test_zerodivision[1] ______________________ self = , a = 3, b = 2 @params([dict(a=1, b=0), dict(a=3, b=2)]) def test_zerodivision(self, a, b): > pytest.raises(ZeroDivisionError, "a/b") E Failed: DID NOT RAISE test_parametrize2.py:23: Failed 2 failed, 2 passed in 0.03 seconds checking serialization between Python interpreters -------------------------------------------------------------- Here is a stripped down real-life example of using parametrized testing for testing serialization between different interpreters. We define a ``test_basic_objects`` function which is to be run with different sets of arguments for its three arguments:: * ``python1``: first python interpreter * ``python2``: second python interpreter * ``obj``: object to be dumped from first interpreter and loaded into second interpreter .. literalinclude:: multipython.py Running it (with Python-2.4 through to Python2.7 installed):: . $ py.test -q multipython.py collecting ... collected 75 items ....s....s....s....ssssss....s....s....s....ssssss....s....s....s....ssssss 48 passed, 27 skipped in 2.04 seconds