31329c8348
Signed-off-by: Shenzhi Wang <shenzhi_wang@foxmail.com> |
||
---|---|---|
.gitattributes | ||
LICENSE | ||
README.md | ||
config.json | ||
generation_config.json | ||
model-00001-of-00030.safetensors | ||
model-00002-of-00030.safetensors | ||
model-00003-of-00030.safetensors | ||
model-00004-of-00030.safetensors | ||
model-00005-of-00030.safetensors | ||
model-00006-of-00030.safetensors | ||
model-00007-of-00030.safetensors | ||
model-00008-of-00030.safetensors | ||
model-00009-of-00030.safetensors | ||
model-00010-of-00030.safetensors | ||
model-00011-of-00030.safetensors | ||
model-00012-of-00030.safetensors | ||
model-00013-of-00030.safetensors | ||
model-00014-of-00030.safetensors | ||
model-00015-of-00030.safetensors | ||
model-00016-of-00030.safetensors | ||
model-00017-of-00030.safetensors | ||
model-00018-of-00030.safetensors | ||
model-00019-of-00030.safetensors | ||
model-00020-of-00030.safetensors | ||
model-00021-of-00030.safetensors | ||
model-00022-of-00030.safetensors | ||
model-00023-of-00030.safetensors | ||
model-00024-of-00030.safetensors | ||
model-00025-of-00030.safetensors | ||
model-00026-of-00030.safetensors | ||
model-00027-of-00030.safetensors | ||
model-00028-of-00030.safetensors | ||
model-00029-of-00030.safetensors | ||
model-00030-of-00030.safetensors | ||
model.safetensors.index.json | ||
special_tokens_map.json | ||
tokenizer.json | ||
tokenizer_config.json |
README.md
Model Summary
Llama3-70B-Chinese-Chat is one of the first instruction-tuned LLMs for Chinese & English users with various abilities such as roleplaying, tool-using, and math, built upon the meta-llama/Meta-Llama-3-70B-Instruct model.
Developed by: Shenzhi Wang (王慎执) and Yaowei Zheng (郑耀威)
- License: Llama-3 License
- Base Model: Meta-Llama-3-70B-Instruct
- Model Size: 70.6B
- Context length: 8K
1. Introduction
This is one of the first LLM fine-tuned specifically for Chinese and English users, based on the Meta-Llama-3-70B-Instruct model. The fine-tuning algorithm used is ORPO [1].
Our Llama3-70B-Chinese-Chat model was trained on a dataset containing over 100K preference pairs, with a roughly equal ratio of Chinese and English data. This dataset will be available soon.
Compared to the original Meta-Llama-3-70B-Instruct model, the Llama3-70B-Chinese-Chat model greatly reduces the issues of "Chinese questions with English answers" and the mixing of Chinese and English in responses. Additionally, Llama3-70B-Chinese-Chat excels at roleplaying, function calling, and mathematics.
With much more parameters than our Llama3-8B-Chinese-Chat model, our Llama3-70B-Chinese-Chat offers significant performance enhancements. If you enjoyed our Llama3-8B-Chinese-Chat, the Llama3-70B-Chinese-Chat is a must-try!
[1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024).
Training framework: LLaMA-Factory.
Training details:
- epochs: 3 (We also provide a 2-epoch model version at the
epoch_2
branch) - learning rate: 1.5e-6
- learning rate scheduler type: cosine
- Warmup ratio: 0.1
- cutoff len (i.e. context length): 8192
- orpo beta (i.e.
\lambda
in the ORPO paper): 0.05 - global batch size: 128
- fine-tuning type: full parameters
- optimizer: paged_adamw_32bit
2. Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "shenzhi-wang/Llama3-70B-Chinese-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id, torch_dtype="auto", device_map="auto"
)
messages = [
{"role": "user", "content": "写一首诗吧"},
]
input_ids = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=8192,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))