630 lines
22 KiB
Python
630 lines
22 KiB
Python
import operator
|
|
import sys
|
|
from decimal import Decimal
|
|
from fractions import Fraction
|
|
from operator import eq
|
|
from operator import ne
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
from _pytest.pytester import Pytester
|
|
from pytest import approx
|
|
|
|
inf, nan = float("inf"), float("nan")
|
|
|
|
|
|
@pytest.fixture
|
|
def mocked_doctest_runner(monkeypatch):
|
|
import doctest
|
|
|
|
class MockedPdb:
|
|
def __init__(self, out):
|
|
pass
|
|
|
|
def set_trace(self):
|
|
raise NotImplementedError("not used")
|
|
|
|
def reset(self):
|
|
pass
|
|
|
|
def set_continue(self):
|
|
pass
|
|
|
|
monkeypatch.setattr("doctest._OutputRedirectingPdb", MockedPdb)
|
|
|
|
class MyDocTestRunner(doctest.DocTestRunner):
|
|
def report_failure(self, out, test, example, got):
|
|
raise AssertionError(
|
|
"'{}' evaluates to '{}', not '{}'".format(
|
|
example.source.strip(), got.strip(), example.want.strip()
|
|
)
|
|
)
|
|
|
|
return MyDocTestRunner()
|
|
|
|
|
|
class TestApprox:
|
|
def test_repr_string(self):
|
|
assert repr(approx(1.0)) == "1.0 ± 1.0e-06"
|
|
assert repr(approx([1.0, 2.0])) == "approx([1.0 ± 1.0e-06, 2.0 ± 2.0e-06])"
|
|
assert repr(approx((1.0, 2.0))) == "approx((1.0 ± 1.0e-06, 2.0 ± 2.0e-06))"
|
|
assert repr(approx(inf)) == "inf"
|
|
assert repr(approx(1.0, rel=nan)) == "1.0 ± ???"
|
|
assert repr(approx(1.0, rel=inf)) == "1.0 ± inf"
|
|
|
|
# Dictionaries aren't ordered, so we need to check both orders.
|
|
assert repr(approx({"a": 1.0, "b": 2.0})) in (
|
|
"approx({'a': 1.0 ± 1.0e-06, 'b': 2.0 ± 2.0e-06})",
|
|
"approx({'b': 2.0 ± 2.0e-06, 'a': 1.0 ± 1.0e-06})",
|
|
)
|
|
|
|
def test_repr_complex_numbers(self):
|
|
assert repr(approx(inf + 1j)) == "(inf+1j)"
|
|
assert repr(approx(1.0j, rel=inf)) == "1j ± inf"
|
|
|
|
# can't compute a sensible tolerance
|
|
assert repr(approx(nan + 1j)) == "(nan+1j) ± ???"
|
|
|
|
assert repr(approx(1.0j)) == "1j ± 1.0e-06 ∠ ±180°"
|
|
|
|
# relative tolerance is scaled to |3+4j| = 5
|
|
assert repr(approx(3 + 4 * 1j)) == "(3+4j) ± 5.0e-06 ∠ ±180°"
|
|
|
|
# absolute tolerance is not scaled
|
|
assert repr(approx(3.3 + 4.4 * 1j, abs=0.02)) == "(3.3+4.4j) ± 2.0e-02 ∠ ±180°"
|
|
|
|
@pytest.mark.parametrize(
|
|
"value, expected_repr_string",
|
|
[
|
|
(5.0, "approx(5.0 ± 5.0e-06)"),
|
|
([5.0], "approx([5.0 ± 5.0e-06])"),
|
|
([[5.0]], "approx([[5.0 ± 5.0e-06]])"),
|
|
([[5.0, 6.0]], "approx([[5.0 ± 5.0e-06, 6.0 ± 6.0e-06]])"),
|
|
([[5.0], [6.0]], "approx([[5.0 ± 5.0e-06], [6.0 ± 6.0e-06]])"),
|
|
],
|
|
)
|
|
def test_repr_nd_array(self, value, expected_repr_string):
|
|
"""Make sure that arrays of all different dimensions are repr'd correctly."""
|
|
np = pytest.importorskip("numpy")
|
|
np_array = np.array(value)
|
|
assert repr(approx(np_array)) == expected_repr_string
|
|
|
|
def test_operator_overloading(self):
|
|
assert 1 == approx(1, rel=1e-6, abs=1e-12)
|
|
assert not (1 != approx(1, rel=1e-6, abs=1e-12))
|
|
assert 10 != approx(1, rel=1e-6, abs=1e-12)
|
|
assert not (10 == approx(1, rel=1e-6, abs=1e-12))
|
|
|
|
def test_exactly_equal(self):
|
|
examples = [
|
|
(2.0, 2.0),
|
|
(0.1e200, 0.1e200),
|
|
(1.123e-300, 1.123e-300),
|
|
(12345, 12345.0),
|
|
(0.0, -0.0),
|
|
(345678, 345678),
|
|
(Decimal("1.0001"), Decimal("1.0001")),
|
|
(Fraction(1, 3), Fraction(-1, -3)),
|
|
]
|
|
for a, x in examples:
|
|
assert a == approx(x)
|
|
|
|
def test_opposite_sign(self):
|
|
examples = [(eq, 1e-100, -1e-100), (ne, 1e100, -1e100)]
|
|
for op, a, x in examples:
|
|
assert op(a, approx(x))
|
|
|
|
def test_zero_tolerance(self):
|
|
within_1e10 = [(1.1e-100, 1e-100), (-1.1e-100, -1e-100)]
|
|
for a, x in within_1e10:
|
|
assert x == approx(x, rel=0.0, abs=0.0)
|
|
assert a != approx(x, rel=0.0, abs=0.0)
|
|
assert a == approx(x, rel=0.0, abs=5e-101)
|
|
assert a != approx(x, rel=0.0, abs=5e-102)
|
|
assert a == approx(x, rel=5e-1, abs=0.0)
|
|
assert a != approx(x, rel=5e-2, abs=0.0)
|
|
|
|
@pytest.mark.parametrize(
|
|
("rel", "abs"),
|
|
[
|
|
(-1e100, None),
|
|
(None, -1e100),
|
|
(1e100, -1e100),
|
|
(-1e100, 1e100),
|
|
(-1e100, -1e100),
|
|
],
|
|
)
|
|
def test_negative_tolerance(
|
|
self, rel: Optional[float], abs: Optional[float]
|
|
) -> None:
|
|
# Negative tolerances are not allowed.
|
|
with pytest.raises(ValueError):
|
|
1.1 == approx(1, rel, abs)
|
|
|
|
def test_inf_tolerance(self):
|
|
# Everything should be equal if the tolerance is infinite.
|
|
large_diffs = [(1, 1000), (1e-50, 1e50), (-1.0, -1e300), (0.0, 10)]
|
|
for a, x in large_diffs:
|
|
assert a != approx(x, rel=0.0, abs=0.0)
|
|
assert a == approx(x, rel=inf, abs=0.0)
|
|
assert a == approx(x, rel=0.0, abs=inf)
|
|
assert a == approx(x, rel=inf, abs=inf)
|
|
|
|
def test_inf_tolerance_expecting_zero(self) -> None:
|
|
# If the relative tolerance is zero but the expected value is infinite,
|
|
# the actual tolerance is a NaN, which should be an error.
|
|
with pytest.raises(ValueError):
|
|
1 == approx(0, rel=inf, abs=0.0)
|
|
with pytest.raises(ValueError):
|
|
1 == approx(0, rel=inf, abs=inf)
|
|
|
|
def test_nan_tolerance(self) -> None:
|
|
with pytest.raises(ValueError):
|
|
1.1 == approx(1, rel=nan)
|
|
with pytest.raises(ValueError):
|
|
1.1 == approx(1, abs=nan)
|
|
with pytest.raises(ValueError):
|
|
1.1 == approx(1, rel=nan, abs=nan)
|
|
|
|
def test_reasonable_defaults(self):
|
|
# Whatever the defaults are, they should work for numbers close to 1
|
|
# than have a small amount of floating-point error.
|
|
assert 0.1 + 0.2 == approx(0.3)
|
|
|
|
def test_default_tolerances(self):
|
|
# This tests the defaults as they are currently set. If you change the
|
|
# defaults, this test will fail but you should feel free to change it.
|
|
# None of the other tests (except the doctests) should be affected by
|
|
# the choice of defaults.
|
|
examples = [
|
|
# Relative tolerance used.
|
|
(eq, 1e100 + 1e94, 1e100),
|
|
(ne, 1e100 + 2e94, 1e100),
|
|
(eq, 1e0 + 1e-6, 1e0),
|
|
(ne, 1e0 + 2e-6, 1e0),
|
|
# Absolute tolerance used.
|
|
(eq, 1e-100, +1e-106),
|
|
(eq, 1e-100, +2e-106),
|
|
(eq, 1e-100, 0),
|
|
]
|
|
for op, a, x in examples:
|
|
assert op(a, approx(x))
|
|
|
|
def test_custom_tolerances(self):
|
|
assert 1e8 + 1e0 == approx(1e8, rel=5e-8, abs=5e0)
|
|
assert 1e8 + 1e0 == approx(1e8, rel=5e-9, abs=5e0)
|
|
assert 1e8 + 1e0 == approx(1e8, rel=5e-8, abs=5e-1)
|
|
assert 1e8 + 1e0 != approx(1e8, rel=5e-9, abs=5e-1)
|
|
|
|
assert 1e0 + 1e-8 == approx(1e0, rel=5e-8, abs=5e-8)
|
|
assert 1e0 + 1e-8 == approx(1e0, rel=5e-9, abs=5e-8)
|
|
assert 1e0 + 1e-8 == approx(1e0, rel=5e-8, abs=5e-9)
|
|
assert 1e0 + 1e-8 != approx(1e0, rel=5e-9, abs=5e-9)
|
|
|
|
assert 1e-8 + 1e-16 == approx(1e-8, rel=5e-8, abs=5e-16)
|
|
assert 1e-8 + 1e-16 == approx(1e-8, rel=5e-9, abs=5e-16)
|
|
assert 1e-8 + 1e-16 == approx(1e-8, rel=5e-8, abs=5e-17)
|
|
assert 1e-8 + 1e-16 != approx(1e-8, rel=5e-9, abs=5e-17)
|
|
|
|
def test_relative_tolerance(self):
|
|
within_1e8_rel = [(1e8 + 1e0, 1e8), (1e0 + 1e-8, 1e0), (1e-8 + 1e-16, 1e-8)]
|
|
for a, x in within_1e8_rel:
|
|
assert a == approx(x, rel=5e-8, abs=0.0)
|
|
assert a != approx(x, rel=5e-9, abs=0.0)
|
|
|
|
def test_absolute_tolerance(self):
|
|
within_1e8_abs = [(1e8 + 9e-9, 1e8), (1e0 + 9e-9, 1e0), (1e-8 + 9e-9, 1e-8)]
|
|
for a, x in within_1e8_abs:
|
|
assert a == approx(x, rel=0, abs=5e-8)
|
|
assert a != approx(x, rel=0, abs=5e-9)
|
|
|
|
def test_expecting_zero(self):
|
|
examples = [
|
|
(ne, 1e-6, 0.0),
|
|
(ne, -1e-6, 0.0),
|
|
(eq, 1e-12, 0.0),
|
|
(eq, -1e-12, 0.0),
|
|
(ne, 2e-12, 0.0),
|
|
(ne, -2e-12, 0.0),
|
|
(ne, inf, 0.0),
|
|
(ne, nan, 0.0),
|
|
]
|
|
for op, a, x in examples:
|
|
assert op(a, approx(x, rel=0.0, abs=1e-12))
|
|
assert op(a, approx(x, rel=1e-6, abs=1e-12))
|
|
|
|
def test_expecting_inf(self):
|
|
examples = [
|
|
(eq, inf, inf),
|
|
(eq, -inf, -inf),
|
|
(ne, inf, -inf),
|
|
(ne, 0.0, inf),
|
|
(ne, nan, inf),
|
|
]
|
|
for op, a, x in examples:
|
|
assert op(a, approx(x))
|
|
|
|
def test_expecting_nan(self):
|
|
examples = [
|
|
(eq, nan, nan),
|
|
(eq, -nan, -nan),
|
|
(eq, nan, -nan),
|
|
(ne, 0.0, nan),
|
|
(ne, inf, nan),
|
|
]
|
|
for op, a, x in examples:
|
|
# Nothing is equal to NaN by default.
|
|
assert a != approx(x)
|
|
|
|
# If ``nan_ok=True``, then NaN is equal to NaN.
|
|
assert op(a, approx(x, nan_ok=True))
|
|
|
|
def test_int(self):
|
|
within_1e6 = [(1000001, 1000000), (-1000001, -1000000)]
|
|
for a, x in within_1e6:
|
|
assert a == approx(x, rel=5e-6, abs=0)
|
|
assert a != approx(x, rel=5e-7, abs=0)
|
|
assert approx(x, rel=5e-6, abs=0) == a
|
|
assert approx(x, rel=5e-7, abs=0) != a
|
|
|
|
def test_decimal(self):
|
|
within_1e6 = [
|
|
(Decimal("1.000001"), Decimal("1.0")),
|
|
(Decimal("-1.000001"), Decimal("-1.0")),
|
|
]
|
|
for a, x in within_1e6:
|
|
assert a == approx(x)
|
|
assert a == approx(x, rel=Decimal("5e-6"), abs=0)
|
|
assert a != approx(x, rel=Decimal("5e-7"), abs=0)
|
|
assert approx(x, rel=Decimal("5e-6"), abs=0) == a
|
|
assert approx(x, rel=Decimal("5e-7"), abs=0) != a
|
|
|
|
def test_fraction(self):
|
|
within_1e6 = [
|
|
(1 + Fraction(1, 1000000), Fraction(1)),
|
|
(-1 - Fraction(-1, 1000000), Fraction(-1)),
|
|
]
|
|
for a, x in within_1e6:
|
|
assert a == approx(x, rel=5e-6, abs=0)
|
|
assert a != approx(x, rel=5e-7, abs=0)
|
|
assert approx(x, rel=5e-6, abs=0) == a
|
|
assert approx(x, rel=5e-7, abs=0) != a
|
|
|
|
def test_complex(self):
|
|
within_1e6 = [
|
|
(1.000001 + 1.0j, 1.0 + 1.0j),
|
|
(1.0 + 1.000001j, 1.0 + 1.0j),
|
|
(-1.000001 + 1.0j, -1.0 + 1.0j),
|
|
(1.0 - 1.000001j, 1.0 - 1.0j),
|
|
]
|
|
for a, x in within_1e6:
|
|
assert a == approx(x, rel=5e-6, abs=0)
|
|
assert a != approx(x, rel=5e-7, abs=0)
|
|
assert approx(x, rel=5e-6, abs=0) == a
|
|
assert approx(x, rel=5e-7, abs=0) != a
|
|
|
|
def test_list(self):
|
|
actual = [1 + 1e-7, 2 + 1e-8]
|
|
expected = [1, 2]
|
|
|
|
# Return false if any element is outside the tolerance.
|
|
assert actual == approx(expected, rel=5e-7, abs=0)
|
|
assert actual != approx(expected, rel=5e-8, abs=0)
|
|
assert approx(expected, rel=5e-7, abs=0) == actual
|
|
assert approx(expected, rel=5e-8, abs=0) != actual
|
|
|
|
def test_list_decimal(self):
|
|
actual = [Decimal("1.000001"), Decimal("2.000001")]
|
|
expected = [Decimal("1"), Decimal("2")]
|
|
|
|
assert actual == approx(expected)
|
|
|
|
def test_list_wrong_len(self):
|
|
assert [1, 2] != approx([1])
|
|
assert [1, 2] != approx([1, 2, 3])
|
|
|
|
def test_tuple(self):
|
|
actual = (1 + 1e-7, 2 + 1e-8)
|
|
expected = (1, 2)
|
|
|
|
# Return false if any element is outside the tolerance.
|
|
assert actual == approx(expected, rel=5e-7, abs=0)
|
|
assert actual != approx(expected, rel=5e-8, abs=0)
|
|
assert approx(expected, rel=5e-7, abs=0) == actual
|
|
assert approx(expected, rel=5e-8, abs=0) != actual
|
|
|
|
def test_tuple_wrong_len(self):
|
|
assert (1, 2) != approx((1,))
|
|
assert (1, 2) != approx((1, 2, 3))
|
|
|
|
def test_tuple_vs_other(self):
|
|
assert 1 != approx((1,))
|
|
|
|
def test_dict(self):
|
|
actual = {"a": 1 + 1e-7, "b": 2 + 1e-8}
|
|
# Dictionaries became ordered in python3.6, so switch up the order here
|
|
# to make sure it doesn't matter.
|
|
expected = {"b": 2, "a": 1}
|
|
|
|
# Return false if any element is outside the tolerance.
|
|
assert actual == approx(expected, rel=5e-7, abs=0)
|
|
assert actual != approx(expected, rel=5e-8, abs=0)
|
|
assert approx(expected, rel=5e-7, abs=0) == actual
|
|
assert approx(expected, rel=5e-8, abs=0) != actual
|
|
|
|
def test_dict_decimal(self):
|
|
actual = {"a": Decimal("1.000001"), "b": Decimal("2.000001")}
|
|
# Dictionaries became ordered in python3.6, so switch up the order here
|
|
# to make sure it doesn't matter.
|
|
expected = {"b": Decimal("2"), "a": Decimal("1")}
|
|
|
|
assert actual == approx(expected)
|
|
|
|
def test_dict_wrong_len(self):
|
|
assert {"a": 1, "b": 2} != approx({"a": 1})
|
|
assert {"a": 1, "b": 2} != approx({"a": 1, "c": 2})
|
|
assert {"a": 1, "b": 2} != approx({"a": 1, "b": 2, "c": 3})
|
|
|
|
def test_dict_nonnumeric(self):
|
|
assert {"a": 1.0, "b": None} == pytest.approx({"a": 1.0, "b": None})
|
|
assert {"a": 1.0, "b": 1} != pytest.approx({"a": 1.0, "b": None})
|
|
|
|
def test_dict_vs_other(self):
|
|
assert 1 != approx({"a": 0})
|
|
|
|
def test_numpy_array(self):
|
|
np = pytest.importorskip("numpy")
|
|
|
|
actual = np.array([1 + 1e-7, 2 + 1e-8])
|
|
expected = np.array([1, 2])
|
|
|
|
# Return false if any element is outside the tolerance.
|
|
assert actual == approx(expected, rel=5e-7, abs=0)
|
|
assert actual != approx(expected, rel=5e-8, abs=0)
|
|
assert approx(expected, rel=5e-7, abs=0) == expected
|
|
assert approx(expected, rel=5e-8, abs=0) != actual
|
|
|
|
# Should be able to compare lists with numpy arrays.
|
|
assert list(actual) == approx(expected, rel=5e-7, abs=0)
|
|
assert list(actual) != approx(expected, rel=5e-8, abs=0)
|
|
assert actual == approx(list(expected), rel=5e-7, abs=0)
|
|
assert actual != approx(list(expected), rel=5e-8, abs=0)
|
|
|
|
def test_numpy_tolerance_args(self):
|
|
"""
|
|
Check that numpy rel/abs args are handled correctly
|
|
for comparison against an np.array
|
|
Check both sides of the operator, hopefully it doesn't impact things.
|
|
Test all permutations of where the approx and np.array() can show up
|
|
"""
|
|
np = pytest.importorskip("numpy")
|
|
expected = 100.0
|
|
actual = 99.0
|
|
abs_diff = expected - actual
|
|
rel_diff = (expected - actual) / expected
|
|
|
|
tests = [
|
|
(eq, abs_diff, 0),
|
|
(eq, 0, rel_diff),
|
|
(ne, 0, rel_diff / 2.0), # rel diff fail
|
|
(ne, abs_diff / 2.0, 0), # abs diff fail
|
|
]
|
|
|
|
for op, _abs, _rel in tests:
|
|
assert op(np.array(actual), approx(expected, abs=_abs, rel=_rel)) # a, b
|
|
assert op(approx(expected, abs=_abs, rel=_rel), np.array(actual)) # b, a
|
|
|
|
assert op(actual, approx(np.array(expected), abs=_abs, rel=_rel)) # a, b
|
|
assert op(approx(np.array(expected), abs=_abs, rel=_rel), actual) # b, a
|
|
|
|
assert op(np.array(actual), approx(np.array(expected), abs=_abs, rel=_rel))
|
|
assert op(approx(np.array(expected), abs=_abs, rel=_rel), np.array(actual))
|
|
|
|
def test_numpy_expecting_nan(self):
|
|
np = pytest.importorskip("numpy")
|
|
examples = [
|
|
(eq, nan, nan),
|
|
(eq, -nan, -nan),
|
|
(eq, nan, -nan),
|
|
(ne, 0.0, nan),
|
|
(ne, inf, nan),
|
|
]
|
|
for op, a, x in examples:
|
|
# Nothing is equal to NaN by default.
|
|
assert np.array(a) != approx(x)
|
|
assert a != approx(np.array(x))
|
|
|
|
# If ``nan_ok=True``, then NaN is equal to NaN.
|
|
assert op(np.array(a), approx(x, nan_ok=True))
|
|
assert op(a, approx(np.array(x), nan_ok=True))
|
|
|
|
def test_numpy_expecting_inf(self):
|
|
np = pytest.importorskip("numpy")
|
|
examples = [
|
|
(eq, inf, inf),
|
|
(eq, -inf, -inf),
|
|
(ne, inf, -inf),
|
|
(ne, 0.0, inf),
|
|
(ne, nan, inf),
|
|
]
|
|
for op, a, x in examples:
|
|
assert op(np.array(a), approx(x))
|
|
assert op(a, approx(np.array(x)))
|
|
assert op(np.array(a), approx(np.array(x)))
|
|
|
|
def test_numpy_array_wrong_shape(self):
|
|
np = pytest.importorskip("numpy")
|
|
|
|
a12 = np.array([[1, 2]])
|
|
a21 = np.array([[1], [2]])
|
|
|
|
assert a12 != approx(a21)
|
|
assert a21 != approx(a12)
|
|
|
|
def test_numpy_array_protocol(self):
|
|
"""
|
|
array-like objects such as tensorflow's DeviceArray are handled like ndarray.
|
|
See issue #8132
|
|
"""
|
|
np = pytest.importorskip("numpy")
|
|
|
|
class DeviceArray:
|
|
def __init__(self, value, size):
|
|
self.value = value
|
|
self.size = size
|
|
|
|
def __array__(self):
|
|
return self.value * np.ones(self.size)
|
|
|
|
class DeviceScalar:
|
|
def __init__(self, value):
|
|
self.value = value
|
|
|
|
def __array__(self):
|
|
return np.array(self.value)
|
|
|
|
expected = 1
|
|
actual = 1 + 1e-6
|
|
assert approx(expected) == DeviceArray(actual, size=1)
|
|
assert approx(expected) == DeviceArray(actual, size=2)
|
|
assert approx(expected) == DeviceScalar(actual)
|
|
assert approx(DeviceScalar(expected)) == actual
|
|
assert approx(DeviceScalar(expected)) == DeviceScalar(actual)
|
|
|
|
def test_doctests(self, mocked_doctest_runner) -> None:
|
|
import doctest
|
|
|
|
parser = doctest.DocTestParser()
|
|
assert approx.__doc__ is not None
|
|
test = parser.get_doctest(
|
|
approx.__doc__, {"approx": approx}, approx.__name__, None, None
|
|
)
|
|
mocked_doctest_runner.run(test)
|
|
|
|
def test_unicode_plus_minus(self, pytester: Pytester) -> None:
|
|
"""
|
|
Comparing approx instances inside lists should not produce an error in the detailed diff.
|
|
Integration test for issue #2111.
|
|
"""
|
|
pytester.makepyfile(
|
|
"""
|
|
import pytest
|
|
def test_foo():
|
|
assert [3] == [pytest.approx(4)]
|
|
"""
|
|
)
|
|
expected = "4.0e-06"
|
|
result = pytester.runpytest()
|
|
result.stdout.fnmatch_lines(
|
|
[f"*At index 0 diff: 3 != 4 ± {expected}", "=* 1 failed in *="]
|
|
)
|
|
|
|
@pytest.mark.parametrize(
|
|
"x, name",
|
|
[
|
|
pytest.param([[1]], "data structures", id="nested-list"),
|
|
pytest.param({"key": {"key": 1}}, "dictionaries", id="nested-dict"),
|
|
],
|
|
)
|
|
def test_expected_value_type_error(self, x, name):
|
|
with pytest.raises(
|
|
TypeError,
|
|
match=fr"pytest.approx\(\) does not support nested {name}:",
|
|
):
|
|
approx(x)
|
|
|
|
@pytest.mark.parametrize(
|
|
"x",
|
|
[
|
|
pytest.param(None),
|
|
pytest.param("string"),
|
|
pytest.param(["string"], id="nested-str"),
|
|
pytest.param({"key": "string"}, id="dict-with-string"),
|
|
],
|
|
)
|
|
def test_nonnumeric_okay_if_equal(self, x):
|
|
assert x == approx(x)
|
|
|
|
@pytest.mark.parametrize(
|
|
"x",
|
|
[
|
|
pytest.param("string"),
|
|
pytest.param(["string"], id="nested-str"),
|
|
pytest.param({"key": "string"}, id="dict-with-string"),
|
|
],
|
|
)
|
|
def test_nonnumeric_false_if_unequal(self, x):
|
|
"""For nonnumeric types, x != pytest.approx(y) reduces to x != y"""
|
|
assert "ab" != approx("abc")
|
|
assert ["ab"] != approx(["abc"])
|
|
# in particular, both of these should return False
|
|
assert {"a": 1.0} != approx({"a": None})
|
|
assert {"a": None} != approx({"a": 1.0})
|
|
|
|
assert 1.0 != approx(None)
|
|
assert None != approx(1.0) # noqa: E711
|
|
|
|
assert 1.0 != approx([None])
|
|
assert None != approx([1.0]) # noqa: E711
|
|
|
|
@pytest.mark.skipif(sys.version_info < (3, 7), reason="requires ordered dicts")
|
|
def test_nonnumeric_dict_repr(self):
|
|
"""Dicts with non-numerics and infinites have no tolerances"""
|
|
x1 = {"foo": 1.0000005, "bar": None, "foobar": inf}
|
|
assert (
|
|
repr(approx(x1))
|
|
== "approx({'foo': 1.0000005 ± 1.0e-06, 'bar': None, 'foobar': inf})"
|
|
)
|
|
|
|
def test_nonnumeric_list_repr(self):
|
|
"""Lists with non-numerics and infinites have no tolerances"""
|
|
x1 = [1.0000005, None, inf]
|
|
assert repr(approx(x1)) == "approx([1.0000005 ± 1.0e-06, None, inf])"
|
|
|
|
@pytest.mark.parametrize(
|
|
"op",
|
|
[
|
|
pytest.param(operator.le, id="<="),
|
|
pytest.param(operator.lt, id="<"),
|
|
pytest.param(operator.ge, id=">="),
|
|
pytest.param(operator.gt, id=">"),
|
|
],
|
|
)
|
|
def test_comparison_operator_type_error(self, op):
|
|
"""pytest.approx should raise TypeError for operators other than == and != (#2003)."""
|
|
with pytest.raises(TypeError):
|
|
op(1, approx(1, rel=1e-6, abs=1e-12))
|
|
|
|
def test_numpy_array_with_scalar(self):
|
|
np = pytest.importorskip("numpy")
|
|
|
|
actual = np.array([1 + 1e-7, 1 - 1e-8])
|
|
expected = 1.0
|
|
|
|
assert actual == approx(expected, rel=5e-7, abs=0)
|
|
assert actual != approx(expected, rel=5e-8, abs=0)
|
|
assert approx(expected, rel=5e-7, abs=0) == actual
|
|
assert approx(expected, rel=5e-8, abs=0) != actual
|
|
|
|
def test_numpy_scalar_with_array(self):
|
|
np = pytest.importorskip("numpy")
|
|
|
|
actual = 1.0
|
|
expected = np.array([1 + 1e-7, 1 - 1e-8])
|
|
|
|
assert actual == approx(expected, rel=5e-7, abs=0)
|
|
assert actual != approx(expected, rel=5e-8, abs=0)
|
|
assert approx(expected, rel=5e-7, abs=0) == actual
|
|
assert approx(expected, rel=5e-8, abs=0) != actual
|
|
|
|
def test_generic_sized_iterable_object(self):
|
|
class MySizedIterable:
|
|
def __iter__(self):
|
|
return iter([1, 2, 3, 4])
|
|
|
|
def __len__(self):
|
|
return 4
|
|
|
|
expected = MySizedIterable()
|
|
assert [1, 2, 3, 4] == approx(expected)
|