test_ok2/doc/example/parametrize.txt

290 lines
9.2 KiB
Plaintext

.. _paramexamples:
parametrizing tests
=================================================
py.test allows to easily implement your own custom
parametrization scheme for tests. Here we provide
some examples for inspiration and re-use.
generating parameters combinations, depending on command line
----------------------------------------------------------------------------
.. regendoc:wipe
Let's say we want to execute a test with different parameters
and the parameter range shall be determined by a command
line argument. Let's first write a simple computation test::
# content of test_compute.py
def test_compute(param1):
assert param1 < 4
Now we add a test configuration like this::
# content of conftest.py
def pytest_addoption(parser):
parser.addoption("--all", action="store_true",
help="run all combinations")
def pytest_generate_tests(metafunc):
if 'param1' in metafunc.funcargnames:
if metafunc.config.option.all:
end = 5
else:
end = 2
for i in range(end):
metafunc.addcall(funcargs={'param1': i})
This means that we only run 2 tests if we do not pass ``--all``::
$ py.test -q test_compute.py
collecting ... collected 2 items
..
2 passed in 0.01 seconds
We run only two computations, so we see two dots.
let's run the full monty::
$ py.test -q --all
collecting ... collected 5 items
....F
================================= FAILURES =================================
_____________________________ test_compute[4] ______________________________
param1 = 4
def test_compute(param1):
> assert param1 < 4
E assert 4 < 4
test_compute.py:3: AssertionError
1 failed, 4 passed in 0.03 seconds
As expected when running the full range of ``param1`` values
we'll get an error on the last one.
Defering the setup of parametrizing resources
---------------------------------------------------
.. regendoc:wipe
The parametrization of test functions happens at collection
time. It is often a good idea to setup possibly expensive
resources only when the actual test is run. Here is a simple
example how you can achieve that::
# content of test_backends.py
import pytest
def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":
pytest.fail("deliberately failing for demo purposes")
Now we add a test configuration that takes care to generate
two invocations of the ``test_db_initialized`` function and
furthermore a factory that creates a database object when
each test is actually run::
# content of conftest.py
def pytest_generate_tests(metafunc):
if 'db' in metafunc.funcargnames:
metafunc.addcall(param="d1")
metafunc.addcall(param="d2")
class DB1:
"one database object"
class DB2:
"alternative database object"
def pytest_funcarg__db(request):
if request.param == "d1":
return DB1()
elif request.param == "d2":
return DB2()
else:
raise ValueError("invalid internal test config")
Let's first see how it looks like at collection time::
$ py.test test_backends.py --collectonly
<Module 'test_backends.py'>
<Function 'test_db_initialized[0]'>
<Function 'test_db_initialized[1]'>
And then when we run the test::
$ py.test -q test_backends.py
collecting ... collected 2 items
.F
================================= FAILURES =================================
__________________________ test_db_initialized[1] __________________________
db = <conftest.DB2 instance at 0x1a5b488>
def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":
> pytest.fail("deliberately failing for demo purposes")
E Failed: deliberately failing for demo purposes
test_backends.py:6: Failed
1 failed, 1 passed in 0.02 seconds
Now you see that one invocation of the test passes and another fails,
as it to be expected.
Parametrizing test methods through per-class configuration
--------------------------------------------------------------
.. _`unittest parameterizer`: http://code.google.com/p/unittest-ext/source/browse/trunk/params.py
Here is an example ``pytest_generate_function`` function implementing a
parametrization scheme similar to Michael Foords `unittest
parameterizer`_ in a lot less code::
# content of ./test_parametrize.py
import pytest
def pytest_generate_tests(metafunc):
# called once per each test function
for funcargs in metafunc.cls.params[metafunc.function.__name__]:
# schedule a new test function run with applied **funcargs
metafunc.addcall(funcargs=funcargs)
class TestClass:
# a map specifying multiple argument sets for a test method
params = {
'test_equals': [dict(a=1, b=2), dict(a=3, b=3), ],
'test_zerodivision': [dict(a=1, b=0), dict(a=3, b=2)],
}
def test_equals(self, a, b):
assert a == b
def test_zerodivision(self, a, b):
pytest.raises(ZeroDivisionError, "a/b")
Running it means we are two tests for each test functions, using
the respective settings::
$ py.test -q
collecting ... collected 6 items
.FF..F
================================= FAILURES =================================
__________________________ test_db_initialized[1] __________________________
db = <conftest.DB2 instance at 0xf81c20>
def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":
> pytest.fail("deliberately failing for demo purposes")
E Failed: deliberately failing for demo purposes
test_backends.py:6: Failed
_________________________ TestClass.test_equals[0] _________________________
self = <test_parametrize.TestClass instance at 0xf93050>, a = 1, b = 2
def test_equals(self, a, b):
> assert a == b
E assert 1 == 2
test_parametrize.py:17: AssertionError
______________________ TestClass.test_zerodivision[1] ______________________
self = <test_parametrize.TestClass instance at 0xf93098>, a = 3, b = 2
def test_zerodivision(self, a, b):
> pytest.raises(ZeroDivisionError, "a/b")
E Failed: DID NOT RAISE
test_parametrize.py:20: Failed
3 failed, 3 passed in 0.04 seconds
Parametrizing test methods through a decorator
--------------------------------------------------------------
Modifying the previous example we can also allow decorators
for parametrizing test methods::
# content of test_parametrize2.py
import pytest
# test support code
def params(funcarglist):
def wrapper(function):
function.funcarglist = funcarglist
return function
return wrapper
def pytest_generate_tests(metafunc):
for funcargs in getattr(metafunc.function, 'funcarglist', ()):
metafunc.addcall(funcargs=funcargs)
# actual test code
class TestClass:
@params([dict(a=1, b=2), dict(a=3, b=3), ])
def test_equals(self, a, b):
assert a == b
@params([dict(a=1, b=0), dict(a=3, b=2)])
def test_zerodivision(self, a, b):
pytest.raises(ZeroDivisionError, "a/b")
Running it gives similar results as before::
$ py.test -q test_parametrize2.py
collecting ... collected 4 items
F..F
================================= FAILURES =================================
_________________________ TestClass.test_equals[0] _________________________
self = <test_parametrize2.TestClass instance at 0x27e15a8>, a = 1, b = 2
@params([dict(a=1, b=2), dict(a=3, b=3), ])
def test_equals(self, a, b):
> assert a == b
E assert 1 == 2
test_parametrize2.py:19: AssertionError
______________________ TestClass.test_zerodivision[1] ______________________
self = <test_parametrize2.TestClass instance at 0x2953bd8>, a = 3, b = 2
@params([dict(a=1, b=0), dict(a=3, b=2)])
def test_zerodivision(self, a, b):
> pytest.raises(ZeroDivisionError, "a/b")
E Failed: DID NOT RAISE
test_parametrize2.py:23: Failed
2 failed, 2 passed in 0.03 seconds
checking serialization between Python interpreters
--------------------------------------------------------------
Here is a stripped down real-life example of using parametrized
testing for testing serialization betwee different interpreters.
We define a ``test_basic_objects`` function which is to be run
with different sets of arguments for its three arguments::
* ``python1``: first python interpreter
* ``python2``: second python interpreter
* ``obj``: object to be dumped from first interpreter and loaded into second interpreter
.. literalinclude:: multipython.py
Running it (with Python-2.4 through to Python2.7 installed)::
. $ py.test -q multipython.py
collecting ... collected 75 items
....s....s....s....ssssss....s....s....s....ssssss....s....s....s....ssssss
48 passed, 27 skipped in 1.59 seconds