691 lines
22 KiB
ReStructuredText
691 lines
22 KiB
ReStructuredText
|
||
.. _paramexamples:
|
||
|
||
Parametrizing tests
|
||
=================================================
|
||
|
||
``pytest`` allows to easily parametrize test functions.
|
||
For basic docs, see :ref:`parametrize-basics`.
|
||
|
||
In the following we provide some examples using
|
||
the builtin mechanisms.
|
||
|
||
Generating parameters combinations, depending on command line
|
||
----------------------------------------------------------------------------
|
||
|
||
.. regendoc:wipe
|
||
|
||
Let's say we want to execute a test with different computation
|
||
parameters and the parameter range shall be determined by a command
|
||
line argument. Let's first write a simple (do-nothing) computation test:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of test_compute.py
|
||
|
||
|
||
def test_compute(param1):
|
||
assert param1 < 4
|
||
|
||
Now we add a test configuration like this:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of conftest.py
|
||
|
||
|
||
def pytest_addoption(parser):
|
||
parser.addoption("--all", action="store_true", help="run all combinations")
|
||
|
||
|
||
def pytest_generate_tests(metafunc):
|
||
if "param1" in metafunc.fixturenames:
|
||
if metafunc.config.getoption("all"):
|
||
end = 5
|
||
else:
|
||
end = 2
|
||
metafunc.parametrize("param1", range(end))
|
||
|
||
This means that we only run 2 tests if we do not pass ``--all``:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest -q test_compute.py
|
||
.. [100%]
|
||
2 passed in 0.12s
|
||
|
||
We run only two computations, so we see two dots.
|
||
let's run the full monty:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest -q --all
|
||
....F [100%]
|
||
================================= FAILURES =================================
|
||
_____________________________ test_compute[4] ______________________________
|
||
|
||
param1 = 4
|
||
|
||
def test_compute(param1):
|
||
> assert param1 < 4
|
||
E assert 4 < 4
|
||
|
||
test_compute.py:4: AssertionError
|
||
========================= short test summary info ==========================
|
||
FAILED test_compute.py::test_compute[4] - assert 4 < 4
|
||
1 failed, 4 passed in 0.12s
|
||
|
||
As expected when running the full range of ``param1`` values
|
||
we'll get an error on the last one.
|
||
|
||
|
||
Different options for test IDs
|
||
------------------------------------
|
||
|
||
pytest will build a string that is the test ID for each set of values in a
|
||
parametrized test. These IDs can be used with ``-k`` to select specific cases
|
||
to run, and they will also identify the specific case when one is failing.
|
||
Running pytest with ``--collect-only`` will show the generated IDs.
|
||
|
||
Numbers, strings, booleans and None will have their usual string representation
|
||
used in the test ID. For other objects, pytest will make a string based on
|
||
the argument name:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of test_time.py
|
||
|
||
from datetime import datetime, timedelta
|
||
|
||
import pytest
|
||
|
||
testdata = [
|
||
(datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1)),
|
||
(datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1)),
|
||
]
|
||
|
||
|
||
@pytest.mark.parametrize("a,b,expected", testdata)
|
||
def test_timedistance_v0(a, b, expected):
|
||
diff = a - b
|
||
assert diff == expected
|
||
|
||
|
||
@pytest.mark.parametrize("a,b,expected", testdata, ids=["forward", "backward"])
|
||
def test_timedistance_v1(a, b, expected):
|
||
diff = a - b
|
||
assert diff == expected
|
||
|
||
|
||
def idfn(val):
|
||
if isinstance(val, (datetime,)):
|
||
# note this wouldn't show any hours/minutes/seconds
|
||
return val.strftime("%Y%m%d")
|
||
|
||
|
||
@pytest.mark.parametrize("a,b,expected", testdata, ids=idfn)
|
||
def test_timedistance_v2(a, b, expected):
|
||
diff = a - b
|
||
assert diff == expected
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"a,b,expected",
|
||
[
|
||
pytest.param(
|
||
datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1), id="forward"
|
||
),
|
||
pytest.param(
|
||
datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1), id="backward"
|
||
),
|
||
],
|
||
)
|
||
def test_timedistance_v3(a, b, expected):
|
||
diff = a - b
|
||
assert diff == expected
|
||
|
||
In ``test_timedistance_v0``, we let pytest generate the test IDs.
|
||
|
||
In ``test_timedistance_v1``, we specified ``ids`` as a list of strings which were
|
||
used as the test IDs. These are succinct, but can be a pain to maintain.
|
||
|
||
In ``test_timedistance_v2``, we specified ``ids`` as a function that can generate a
|
||
string representation to make part of the test ID. So our ``datetime`` values use the
|
||
label generated by ``idfn``, but because we didn't generate a label for ``timedelta``
|
||
objects, they are still using the default pytest representation:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest test_time.py --collect-only
|
||
=========================== test session starts ============================
|
||
platform linux -- Python 3.x.y, pytest-8.x.y, pluggy-1.x.y
|
||
rootdir: /home/sweet/project
|
||
collected 8 items
|
||
|
||
<Dir parametrize.rst-194>
|
||
<Module test_time.py>
|
||
<Function test_timedistance_v0[a0-b0-expected0]>
|
||
<Function test_timedistance_v0[a1-b1-expected1]>
|
||
<Function test_timedistance_v1[forward]>
|
||
<Function test_timedistance_v1[backward]>
|
||
<Function test_timedistance_v2[20011212-20011211-expected0]>
|
||
<Function test_timedistance_v2[20011211-20011212-expected1]>
|
||
<Function test_timedistance_v3[forward]>
|
||
<Function test_timedistance_v3[backward]>
|
||
|
||
======================== 8 tests collected in 0.12s ========================
|
||
|
||
In ``test_timedistance_v3``, we used ``pytest.param`` to specify the test IDs
|
||
together with the actual data, instead of listing them separately.
|
||
|
||
A quick port of "testscenarios"
|
||
------------------------------------
|
||
|
||
Here is a quick port to run tests configured with :pypi:`testscenarios`,
|
||
an add-on from Robert Collins for the standard unittest framework. We
|
||
only have to work a bit to construct the correct arguments for pytest's
|
||
:py:func:`Metafunc.parametrize <pytest.Metafunc.parametrize>`:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of test_scenarios.py
|
||
|
||
|
||
def pytest_generate_tests(metafunc):
|
||
idlist = []
|
||
argvalues = []
|
||
for scenario in metafunc.cls.scenarios:
|
||
idlist.append(scenario[0])
|
||
items = scenario[1].items()
|
||
argnames = [x[0] for x in items]
|
||
argvalues.append([x[1] for x in items])
|
||
metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class")
|
||
|
||
|
||
scenario1 = ("basic", {"attribute": "value"})
|
||
scenario2 = ("advanced", {"attribute": "value2"})
|
||
|
||
|
||
class TestSampleWithScenarios:
|
||
scenarios = [scenario1, scenario2]
|
||
|
||
def test_demo1(self, attribute):
|
||
assert isinstance(attribute, str)
|
||
|
||
def test_demo2(self, attribute):
|
||
assert isinstance(attribute, str)
|
||
|
||
this is a fully self-contained example which you can run with:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest test_scenarios.py
|
||
=========================== test session starts ============================
|
||
platform linux -- Python 3.x.y, pytest-8.x.y, pluggy-1.x.y
|
||
rootdir: /home/sweet/project
|
||
collected 4 items
|
||
|
||
test_scenarios.py .... [100%]
|
||
|
||
============================ 4 passed in 0.12s =============================
|
||
|
||
If you just collect tests you'll also nicely see 'advanced' and 'basic' as variants for the test function:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest --collect-only test_scenarios.py
|
||
=========================== test session starts ============================
|
||
platform linux -- Python 3.x.y, pytest-8.x.y, pluggy-1.x.y
|
||
rootdir: /home/sweet/project
|
||
collected 4 items
|
||
|
||
<Dir parametrize.rst-194>
|
||
<Module test_scenarios.py>
|
||
<Class TestSampleWithScenarios>
|
||
<Function test_demo1[basic]>
|
||
<Function test_demo2[basic]>
|
||
<Function test_demo1[advanced]>
|
||
<Function test_demo2[advanced]>
|
||
|
||
======================== 4 tests collected in 0.12s ========================
|
||
|
||
Note that we told ``metafunc.parametrize()`` that your scenario values
|
||
should be considered class-scoped. With pytest-2.3 this leads to a
|
||
resource-based ordering.
|
||
|
||
Deferring the setup of parametrized resources
|
||
---------------------------------------------------
|
||
|
||
.. regendoc:wipe
|
||
|
||
The parametrization of test functions happens at collection
|
||
time. It is a good idea to setup expensive resources like DB
|
||
connections or subprocess only when the actual test is run.
|
||
Here is a simple example how you can achieve that. This test
|
||
requires a ``db`` object fixture:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of test_backends.py
|
||
|
||
import pytest
|
||
|
||
|
||
def test_db_initialized(db):
|
||
# a dummy test
|
||
if db.__class__.__name__ == "DB2":
|
||
pytest.fail("deliberately failing for demo purposes")
|
||
|
||
We can now add a test configuration that generates two invocations of
|
||
the ``test_db_initialized`` function and also implements a factory that
|
||
creates a database object for the actual test invocations:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of conftest.py
|
||
import pytest
|
||
|
||
|
||
def pytest_generate_tests(metafunc):
|
||
if "db" in metafunc.fixturenames:
|
||
metafunc.parametrize("db", ["d1", "d2"], indirect=True)
|
||
|
||
|
||
class DB1:
|
||
"one database object"
|
||
|
||
|
||
class DB2:
|
||
"alternative database object"
|
||
|
||
|
||
@pytest.fixture
|
||
def db(request):
|
||
if request.param == "d1":
|
||
return DB1()
|
||
elif request.param == "d2":
|
||
return DB2()
|
||
else:
|
||
raise ValueError("invalid internal test config")
|
||
|
||
Let's first see how it looks like at collection time:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest test_backends.py --collect-only
|
||
=========================== test session starts ============================
|
||
platform linux -- Python 3.x.y, pytest-8.x.y, pluggy-1.x.y
|
||
rootdir: /home/sweet/project
|
||
collected 2 items
|
||
|
||
<Dir parametrize.rst-194>
|
||
<Module test_backends.py>
|
||
<Function test_db_initialized[d1]>
|
||
<Function test_db_initialized[d2]>
|
||
|
||
======================== 2 tests collected in 0.12s ========================
|
||
|
||
And then when we run the test:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest -q test_backends.py
|
||
.F [100%]
|
||
================================= FAILURES =================================
|
||
_________________________ test_db_initialized[d2] __________________________
|
||
|
||
db = <conftest.DB2 object at 0xdeadbeef0001>
|
||
|
||
def test_db_initialized(db):
|
||
# a dummy test
|
||
if db.__class__.__name__ == "DB2":
|
||
> pytest.fail("deliberately failing for demo purposes")
|
||
E Failed: deliberately failing for demo purposes
|
||
|
||
test_backends.py:8: Failed
|
||
========================= short test summary info ==========================
|
||
FAILED test_backends.py::test_db_initialized[d2] - Failed: deliberately f...
|
||
1 failed, 1 passed in 0.12s
|
||
|
||
The first invocation with ``db == "DB1"`` passed while the second with ``db == "DB2"`` failed. Our ``db`` fixture function has instantiated each of the DB values during the setup phase while the ``pytest_generate_tests`` generated two according calls to the ``test_db_initialized`` during the collection phase.
|
||
|
||
Indirect parametrization
|
||
---------------------------------------------------
|
||
|
||
Using the ``indirect=True`` parameter when parametrizing a test allows to
|
||
parametrize a test with a fixture receiving the values before passing them to a
|
||
test:
|
||
|
||
.. code-block:: python
|
||
|
||
import pytest
|
||
|
||
|
||
@pytest.fixture
|
||
def fixt(request):
|
||
return request.param * 3
|
||
|
||
|
||
@pytest.mark.parametrize("fixt", ["a", "b"], indirect=True)
|
||
def test_indirect(fixt):
|
||
assert len(fixt) == 3
|
||
|
||
This can be used, for example, to do more expensive setup at test run time in
|
||
the fixture, rather than having to run those setup steps at collection time.
|
||
|
||
.. regendoc:wipe
|
||
|
||
Apply indirect on particular arguments
|
||
---------------------------------------------------
|
||
|
||
Very often parametrization uses more than one argument name. There is opportunity to apply ``indirect``
|
||
parameter on particular arguments. It can be done by passing list or tuple of
|
||
arguments' names to ``indirect``. In the example below there is a function ``test_indirect`` which uses
|
||
two fixtures: ``x`` and ``y``. Here we give to indirect the list, which contains the name of the
|
||
fixture ``x``. The indirect parameter will be applied to this argument only, and the value ``a``
|
||
will be passed to respective fixture function:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of test_indirect_list.py
|
||
|
||
import pytest
|
||
|
||
|
||
@pytest.fixture(scope="function")
|
||
def x(request):
|
||
return request.param * 3
|
||
|
||
|
||
@pytest.fixture(scope="function")
|
||
def y(request):
|
||
return request.param * 2
|
||
|
||
|
||
@pytest.mark.parametrize("x, y", [("a", "b")], indirect=["x"])
|
||
def test_indirect(x, y):
|
||
assert x == "aaa"
|
||
assert y == "b"
|
||
|
||
The result of this test will be successful:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest -v test_indirect_list.py
|
||
=========================== test session starts ============================
|
||
platform linux -- Python 3.x.y, pytest-8.x.y, pluggy-1.x.y -- $PYTHON_PREFIX/bin/python
|
||
cachedir: .pytest_cache
|
||
rootdir: /home/sweet/project
|
||
collecting ... collected 1 item
|
||
|
||
test_indirect_list.py::test_indirect[a-b] PASSED [100%]
|
||
|
||
============================ 1 passed in 0.12s =============================
|
||
|
||
.. regendoc:wipe
|
||
|
||
Parametrizing test methods through per-class configuration
|
||
--------------------------------------------------------------
|
||
|
||
.. _`unittest parametrizer`: https://github.com/testing-cabal/unittest-ext/blob/master/params.py
|
||
|
||
|
||
Here is an example ``pytest_generate_tests`` function implementing a
|
||
parametrization scheme similar to Michael Foord's `unittest
|
||
parametrizer`_ but in a lot less code:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of ./test_parametrize.py
|
||
import pytest
|
||
|
||
|
||
def pytest_generate_tests(metafunc):
|
||
# called once per each test function
|
||
funcarglist = metafunc.cls.params[metafunc.function.__name__]
|
||
argnames = sorted(funcarglist[0])
|
||
metafunc.parametrize(
|
||
argnames, [[funcargs[name] for name in argnames] for funcargs in funcarglist]
|
||
)
|
||
|
||
|
||
class TestClass:
|
||
# a map specifying multiple argument sets for a test method
|
||
params = {
|
||
"test_equals": [dict(a=1, b=2), dict(a=3, b=3)],
|
||
"test_zerodivision": [dict(a=1, b=0)],
|
||
}
|
||
|
||
def test_equals(self, a, b):
|
||
assert a == b
|
||
|
||
def test_zerodivision(self, a, b):
|
||
with pytest.raises(ZeroDivisionError):
|
||
a / b
|
||
|
||
Our test generator looks up a class-level definition which specifies which
|
||
argument sets to use for each test function. Let's run it:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest -q
|
||
F.. [100%]
|
||
================================= FAILURES =================================
|
||
________________________ TestClass.test_equals[1-2] ________________________
|
||
|
||
self = <test_parametrize.TestClass object at 0xdeadbeef0002>, a = 1, b = 2
|
||
|
||
def test_equals(self, a, b):
|
||
> assert a == b
|
||
E assert 1 == 2
|
||
|
||
test_parametrize.py:21: AssertionError
|
||
========================= short test summary info ==========================
|
||
FAILED test_parametrize.py::TestClass::test_equals[1-2] - assert 1 == 2
|
||
1 failed, 2 passed in 0.12s
|
||
|
||
Parametrization with multiple fixtures
|
||
--------------------------------------
|
||
|
||
Here is a stripped down real-life example of using parametrized
|
||
testing for testing serialization of objects between different python
|
||
interpreters. We define a ``test_basic_objects`` function which
|
||
is to be run with different sets of arguments for its three arguments:
|
||
|
||
* ``python1``: first python interpreter, run to pickle-dump an object to a file
|
||
* ``python2``: second interpreter, run to pickle-load an object from a file
|
||
* ``obj``: object to be dumped/loaded
|
||
|
||
.. literalinclude:: multipython.py
|
||
|
||
Running it results in some skips if we don't have all the python interpreters installed and otherwise runs all combinations (3 interpreters times 3 interpreters times 3 objects to serialize/deserialize):
|
||
|
||
.. code-block:: pytest
|
||
|
||
. $ pytest -rs -q multipython.py
|
||
ssssssssssss...ssssssssssss [100%]
|
||
========================= short test summary info ==========================
|
||
SKIPPED [12] multipython.py:65: 'python3.9' not found
|
||
SKIPPED [12] multipython.py:65: 'python3.11' not found
|
||
3 passed, 24 skipped in 0.12s
|
||
|
||
Parametrization of optional implementations/imports
|
||
---------------------------------------------------
|
||
|
||
If you want to compare the outcomes of several implementations of a given
|
||
API, you can write test functions that receive the already imported implementations
|
||
and get skipped in case the implementation is not importable/available. Let's
|
||
say we have a "base" implementation and the other (possibly optimized ones)
|
||
need to provide similar results:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of conftest.py
|
||
|
||
import pytest
|
||
|
||
|
||
@pytest.fixture(scope="session")
|
||
def basemod(request):
|
||
return pytest.importorskip("base")
|
||
|
||
|
||
@pytest.fixture(scope="session", params=["opt1", "opt2"])
|
||
def optmod(request):
|
||
return pytest.importorskip(request.param)
|
||
|
||
And then a base implementation of a simple function:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of base.py
|
||
def func1():
|
||
return 1
|
||
|
||
And an optimized version:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of opt1.py
|
||
def func1():
|
||
return 1.0001
|
||
|
||
And finally a little test module:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of test_module.py
|
||
|
||
|
||
def test_func1(basemod, optmod):
|
||
assert round(basemod.func1(), 3) == round(optmod.func1(), 3)
|
||
|
||
|
||
If you run this with reporting for skips enabled:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest -rs test_module.py
|
||
=========================== test session starts ============================
|
||
platform linux -- Python 3.x.y, pytest-8.x.y, pluggy-1.x.y
|
||
rootdir: /home/sweet/project
|
||
collected 2 items
|
||
|
||
test_module.py .s [100%]
|
||
|
||
========================= short test summary info ==========================
|
||
SKIPPED [1] test_module.py:3: could not import 'opt2': No module named 'opt2'
|
||
======================= 1 passed, 1 skipped in 0.12s =======================
|
||
|
||
You'll see that we don't have an ``opt2`` module and thus the second test run
|
||
of our ``test_func1`` was skipped. A few notes:
|
||
|
||
- the fixture functions in the ``conftest.py`` file are "session-scoped" because we
|
||
don't need to import more than once
|
||
|
||
- if you have multiple test functions and a skipped import, you will see
|
||
the ``[1]`` count increasing in the report
|
||
|
||
- you can put :ref:`@pytest.mark.parametrize <@pytest.mark.parametrize>` style
|
||
parametrization on the test functions to parametrize input/output
|
||
values as well.
|
||
|
||
|
||
Set marks or test ID for individual parametrized test
|
||
--------------------------------------------------------------------
|
||
|
||
Use ``pytest.param`` to apply marks or set test ID to individual parametrized test.
|
||
For example:
|
||
|
||
.. code-block:: python
|
||
|
||
# content of test_pytest_param_example.py
|
||
import pytest
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"test_input,expected",
|
||
[
|
||
("3+5", 8),
|
||
pytest.param("1+7", 8, marks=pytest.mark.basic),
|
||
pytest.param("2+4", 6, marks=pytest.mark.basic, id="basic_2+4"),
|
||
pytest.param(
|
||
"6*9", 42, marks=[pytest.mark.basic, pytest.mark.xfail], id="basic_6*9"
|
||
),
|
||
],
|
||
)
|
||
def test_eval(test_input, expected):
|
||
assert eval(test_input) == expected
|
||
|
||
In this example, we have 4 parametrized tests. Except for the first test,
|
||
we mark the rest three parametrized tests with the custom marker ``basic``,
|
||
and for the fourth test we also use the built-in mark ``xfail`` to indicate this
|
||
test is expected to fail. For explicitness, we set test ids for some tests.
|
||
|
||
Then run ``pytest`` with verbose mode and with only the ``basic`` marker:
|
||
|
||
.. code-block:: pytest
|
||
|
||
$ pytest -v -m basic
|
||
=========================== test session starts ============================
|
||
platform linux -- Python 3.x.y, pytest-8.x.y, pluggy-1.x.y -- $PYTHON_PREFIX/bin/python
|
||
cachedir: .pytest_cache
|
||
rootdir: /home/sweet/project
|
||
collecting ... collected 24 items / 21 deselected / 3 selected
|
||
|
||
test_pytest_param_example.py::test_eval[1+7-8] PASSED [ 33%]
|
||
test_pytest_param_example.py::test_eval[basic_2+4] PASSED [ 66%]
|
||
test_pytest_param_example.py::test_eval[basic_6*9] XFAIL [100%]
|
||
|
||
=============== 2 passed, 21 deselected, 1 xfailed in 0.12s ================
|
||
|
||
As the result:
|
||
|
||
- Four tests were collected
|
||
- One test was deselected because it doesn't have the ``basic`` mark.
|
||
- Three tests with the ``basic`` mark was selected.
|
||
- The test ``test_eval[1+7-8]`` passed, but the name is autogenerated and confusing.
|
||
- The test ``test_eval[basic_2+4]`` passed.
|
||
- The test ``test_eval[basic_6*9]`` was expected to fail and did fail.
|
||
|
||
.. _`parametrizing_conditional_raising`:
|
||
|
||
Parametrizing conditional raising
|
||
--------------------------------------------------------------------
|
||
|
||
Use :func:`pytest.raises` with the
|
||
:ref:`pytest.mark.parametrize ref` decorator to write parametrized tests
|
||
in which some tests raise exceptions and others do not.
|
||
|
||
``contextlib.nullcontext`` can be used to test cases that are not expected to
|
||
raise exceptions but that should result in some value. The value is given as the
|
||
``enter_result`` parameter, which will be available as the ``with`` statement’s
|
||
target (``e`` in the example below).
|
||
|
||
For example:
|
||
|
||
.. code-block:: python
|
||
|
||
from contextlib import nullcontext
|
||
|
||
import pytest
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"example_input,expectation",
|
||
[
|
||
(3, nullcontext(2)),
|
||
(2, nullcontext(3)),
|
||
(1, nullcontext(6)),
|
||
(0, pytest.raises(ZeroDivisionError)),
|
||
],
|
||
)
|
||
def test_division(example_input, expectation):
|
||
"""Test how much I know division."""
|
||
with expectation as e:
|
||
assert (6 / example_input) == e
|
||
|
||
In the example above, the first three test cases should run without any
|
||
exceptions, while the fourth should raise a``ZeroDivisionError`` exception,
|
||
which is expected by pytest.
|