deepke/README.md

442 lines
16 KiB
Markdown
Raw Permalink Normal View History

2021-08-19 15:33:03 +08:00
<p align="center">
2021-09-27 16:47:04 +08:00
<a href="https://github.com/zjunlp/deepke"> <img src="pics/logo.png" width="400"/></a>
2021-08-19 15:33:03 +08:00
<p>
2021-09-27 16:47:04 +08:00
<p align="center">
2022-01-07 02:04:44 +08:00
<a href="http://deepke.zjukg.cn">
2021-12-16 22:42:26 +08:00
<img alt="Documentation" src="https://img.shields.io/badge/demo-website-blue">
2021-11-30 14:32:16 +08:00
</a>
2021-10-09 14:42:23 +08:00
<a href="https://pypi.org/project/deepke/#files">
<img alt="PyPI" src="https://img.shields.io/pypi/v/deepke">
</a>
<a href="https://github.com/zjunlp/DeepKE/blob/master/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/zjunlp/deepke">
</a>
2021-12-16 22:33:28 +08:00
<a href="http://zjunlp.github.io/DeepKE">
2021-12-16 22:38:18 +08:00
<img alt="Documentation" src="https://img.shields.io/badge/doc-website-red">
2021-12-16 22:33:28 +08:00
</a>
2022-01-14 11:59:46 +08:00
<a href="https://colab.research.google.com/drive/1vS8YJhJltzw3hpJczPt24O0Azcs3ZpRi?usp=sharing">
<img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg">
2022-01-14 11:14:17 +08:00
</a>
2021-10-09 14:42:23 +08:00
</p>
2022-01-14 11:14:17 +08:00
2022-01-14 11:59:46 +08:00
2021-10-09 14:42:23 +08:00
<p align="center">
2021-12-22 21:13:48 +08:00
<b> English | <a href="https://github.com/zjunlp/DeepKE/blob/main/README_CN.md">简体中文</a> </b>
2021-08-19 15:33:03 +08:00
</p>
2021-08-19 18:43:15 +08:00
2021-11-30 14:26:22 +08:00
<h1 align="center">
<p>A Deep Learning Based Knowledge Extraction Toolkit<br>for Knowledge Base Population</p>
</h1>
2021-10-28 21:26:36 +08:00
2022-01-10 15:30:40 +08:00
DeepKE is a knowledge extraction toolkit supporting **low-resource** and **document-level** scenarios for *entity*, *relation* and *attribute* extraction. We provide [comprehensive documents](https://zjunlp.github.io/DeepKE/), [Google Colab tutorials](), and [online demo](http://deepke.zjukg.cn/) for beginners.
2020-12-02 17:57:03 +08:00
2021-09-28 20:13:25 +08:00
<br>
2022-01-14 11:59:46 +08:00
# Table of Contents
* [What's New](#whats-new)
2022-01-14 12:04:26 +08:00
* [Prediction Demo](#prediction-demo)
2022-01-14 11:59:46 +08:00
* [Model Framework](#model-framework)
* [Quick Start](#quick-start)
2022-01-14 12:23:14 +08:00
* [Requirements](#requirements)
* [Introduction of Three Functions](#introduction-of-three-functions)
* [1. Named Entity Recognition](#1-named-entity-recognition)
* [2. Relation Extraction](#2-relation-extraction)
* [3. Attribute Extraction](#3-attribute-extraction)
2022-01-14 11:59:46 +08:00
* [Notebook Tutorial](#notebook-tutorial)
* [Tips](#tips)
* [To do](#to-do)
* [Citation](#citation)
* [Developers](#developers)
<br>
2022-01-14 11:14:17 +08:00
2021-12-19 14:12:00 +08:00
# What's New
2022-01-11 15:26:50 +08:00
## Jan, 2022
* We have released a paper [DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population](https://arxiv.org/abs/2201.03335)
2021-12-19 20:58:38 +08:00
## Dec, 2021
* We have added `dockerfile` to create the enviroment automatically.
## Nov, 2021
2021-12-19 21:00:52 +08:00
* The demo of DeepKE, supporting real-time extration without deploying and training, has been released.
* The documentation of DeepKE, containing the details of DeepKE such as source codes and datasets, has been released.
2021-12-19 20:58:38 +08:00
## Oct, 2021
2021-12-19 20:52:34 +08:00
* `pip install deepke`
2021-12-19 20:58:38 +08:00
* The codes of deepke-v2.0 have been released.
2022-01-10 22:37:13 +08:00
## August, 2020
2021-12-19 20:58:38 +08:00
* The codes of deepke-v1.0 have been released.
2021-12-16 22:16:30 +08:00
2022-01-14 11:14:17 +08:00
<br>
2022-01-14 12:04:26 +08:00
# Prediction Demo
2020-12-02 16:53:45 +08:00
2021-11-29 19:27:55 +08:00
There is a demonstration of prediction.<br>
2021-09-29 14:40:07 +08:00
<img src="pics/demo.gif" width="636" height="494" align=center>
2021-09-29 13:53:45 +08:00
2021-09-28 20:13:25 +08:00
<br>
2021-11-30 14:26:22 +08:00
# Model Framework
2020-12-02 16:53:45 +08:00
2021-09-27 16:47:04 +08:00
<h3 align="center">
2021-09-27 18:29:57 +08:00
<img src="pics/architectures.png">
2021-09-27 16:47:04 +08:00
</h3>
2021-12-22 21:13:48 +08:00
2020-12-02 16:53:45 +08:00
2021-11-30 14:26:22 +08:00
- DeepKE contains a unified framework for **named entity recognition**, **relation extraction** and **attribute extraction**, the three knowledge extraction functions.
- Each task can be implemented in different scenarios. For example, we can achieve relation extraction in **standard**, **low-resource (few-shot)** and **document-level** settings.
- Each application scenario comprises of three components: **Data** including Tokenizer, Preprocessor and Loader, **Model** including Module, Encoder and Forwarder, **Core** including Training, Evaluation and Prediction.
2020-12-02 16:53:45 +08:00
2021-09-28 20:13:25 +08:00
<br>
2021-09-27 20:51:38 +08:00
2022-01-14 11:59:46 +08:00
# Quick Start
2021-10-11 17:18:38 +08:00
2022-01-10 15:30:40 +08:00
*DeepKE* supports `pip install deepke`. <br>Take the fully supervised relation extraction for example.
2021-10-11 17:18:38 +08:00
2022-01-10 15:30:40 +08:00
**Step1** Download the basic code
2021-11-03 16:41:21 +08:00
2021-11-30 14:26:22 +08:00
```bash
git clone https://github.com/zjunlp/DeepKE.git
```
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
**Step2** Create a virtual environment using `Anaconda` and enter it.<br>
2021-11-29 19:27:55 +08:00
2022-01-10 15:30:40 +08:00
We also provide dockerfile source code, which is located in the `docker` folder, to help users create their own mirrors.
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
conda create -n deepke python=3.8
conda activate deepke
```
2022-01-10 15:30:40 +08:00
1. Install *DeepKE* with source code
2021-11-03 16:41:21 +08:00
2021-11-29 19:27:55 +08:00
```bash
python setup.py install
python setup.py develop
```
2021-11-03 16:41:21 +08:00
2021-12-16 15:37:25 +08:00
2. Install *DeepKE* with `pip`
```bash
pip install deepke
```
2022-01-11 17:01:47 +08:00
2021-11-29 19:27:55 +08:00
**Step3** Enter the task directory
2021-11-03 16:41:21 +08:00
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
cd DeepKE/example/re/standard
```
2021-11-30 14:26:22 +08:00
**Step4** Download the dataset
```bash
wget 120.27.214.45/Data/re/standard/data.tar.gz
tar -xzvf data.tar.gz
```
**Step5** Training (Parameters for training can be changed in the `conf` folder)
2021-11-03 16:41:21 +08:00
2022-01-10 15:30:40 +08:00
We support visual parameter tuning by using *wandb*.
2021-11-30 21:52:11 +08:00
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
python run.py
```
2021-11-30 14:26:22 +08:00
**Step6** Prediction (Parameters for prediction can be changed in the `conf` folder)
2021-11-03 16:41:21 +08:00
2022-01-10 15:30:40 +08:00
Modify the path of the trained model in `predict.yaml`.
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
python predict.py
```
2021-10-11 17:18:38 +08:00
2022-01-14 12:23:14 +08:00
## Requirements
2019-08-20 21:25:34 +08:00
2021-09-28 19:53:58 +08:00
> python == 3.8
2019-12-03 22:41:47 +08:00
2021-10-09 14:42:23 +08:00
- torch == 1.5
2021-09-27 20:51:38 +08:00
- hydra-core == 1.0.6
2021-10-09 14:42:23 +08:00
- tensorboard == 2.4.1
- matplotlib == 3.4.1
- transformers == 3.4.0
- jieba == 0.42.1
- scikit-learn == 0.24.1
- pytorch-transformers == 1.2.0
- seqeval == 1.2.2
- tqdm == 4.60.0
2021-10-10 20:53:41 +08:00
- opt-einsum==3.3.0
2021-11-30 21:53:34 +08:00
- wandb==0.12.7
2021-10-10 20:53:41 +08:00
- ujson
2021-10-09 14:42:23 +08:00
2022-01-14 12:23:14 +08:00
## Introduction of Three Functions
2021-11-30 14:26:22 +08:00
2022-01-14 12:23:14 +08:00
### 1. Named Entity Recognition
2021-10-28 21:10:37 +08:00
2021-11-29 19:27:55 +08:00
- Named entity recognition seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, organizations, etc.
2021-10-28 21:10:37 +08:00
2021-11-29 19:27:55 +08:00
- The data is stored in `.txt` files. Some instances as following:
2021-10-28 21:10:37 +08:00
| Sentence | Person | Location | Organization |
| :----------------------------------------------------------: | :------------------------: | :------------: | :----------------------------: |
| 本报北京9月4日讯记者杨涌报道部分省区人民日报宣传发行工作座谈会9月3日在4日在京举行。 | 杨涌 | 北京 | 人民日报 |
| 《红楼梦》是中央电视台和中国电视剧制作中心根据中国古典文学名著《红楼梦》摄制于1987年的一部古装连续剧由王扶林导演周汝昌、王蒙、周岭等多位红学家参与制作。 | 王扶林,周汝昌,王蒙,周岭 | 中国 | 中央电视台,中国电视剧制作中心 |
| 秦始皇兵马俑位于陕西省西安市1961年被国务院公布为第一批全国重点文物保护单位是世界八大奇迹之一。 | 秦始皇 | 陕西省,西安市 | 国务院 |
2021-11-29 19:27:55 +08:00
- Read the detailed process in specific README
2021-11-30 11:09:03 +08:00
- **[STANDARD (Fully Supervised)](https://github.com/zjunlp/DeepKE/tree/main/example/ner/standard)**
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
**Step1** Enter `DeepKE/example/ner/standard`. Download the dataset.
```bash
wget 120.27.214.45/Data/ner/standard/data.tar.gz
tar -xzvf data.tar.gz
```
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
**Step2** Training<br>
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.
2021-11-29 19:27:55 +08:00
```bash
python run.py
2021-11-03 16:41:21 +08:00
```
2021-11-29 19:27:55 +08:00
**Step3** Prediction
```bash
2021-11-03 16:41:21 +08:00
python predict.py
```
2021-11-30 14:26:22 +08:00
2021-11-30 11:09:03 +08:00
- **[FEW-SHOT](https://github.com/zjunlp/DeepKE/tree/main/example/ner/few-shot)**
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
**Step1** Enter `DeepKE/example/ner/few-shot`. Download the dataset.
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
```bash
wget 120.27.214.45/Data/ner/few_shot/data.tar.gz
tar -xzvf data.tar.gz
```
**Step2** Training in the low-resouce setting <br>
The directory where the model is loaded and saved and the configuration parameters can be cusomized in the `conf` folder.
2021-11-29 19:27:55 +08:00
```bash
python run.py +train=few_shot
```
2021-11-30 14:26:22 +08:00
Users can modify `load_path` in `conf/train/few_shot.yaml` to use existing loaded model.<br>
2021-11-29 19:27:55 +08:00
**Step3** Add `- predict` to `conf/config.yaml`, modify `loda_path` as the model path and `write_path` as the path where the predicted results are saved in `conf/predict.yaml`, and then run `python predict.py`
2021-11-30 14:26:22 +08:00
2021-11-29 19:27:55 +08:00
```bash
python predict.py
```
2021-10-28 21:10:37 +08:00
2022-01-14 12:23:14 +08:00
### 2. Relation Extraction
2021-11-29 19:27:55 +08:00
- Relationship extraction is the task of extracting semantic relations between entities from a unstructured text.
- The data is stored in `.csv` files. Some instances as following:
2021-10-28 21:10:37 +08:00
| Sentence | Relation | Head | Head_offset | Tail | Tail_offset |
| :----------------------------------------------------: | :------: | :--------: | :---------: | :--------: | :---------: |
| 《岳父也是爹》是王军执导的电视剧,由马恩然、范明主演。 | 导演 | 岳父也是爹 | 1 | 王军 | 8 |
| 《九玄珠》是在纵横中文网连载的一部小说,作者是龙马。 | 连载网站 | 九玄珠 | 1 | 纵横中文网 | 7 |
| 提起杭州的美景,西湖总是第一个映入脑海的词语。 | 所在城市 | 西湖 | 8 | 杭州 | 2 |
2021-11-29 19:27:55 +08:00
- Read the detailed process in specific README
2021-11-03 17:04:47 +08:00
2021-11-30 14:26:22 +08:00
- **[STANDARD (Fully Supervised)](https://github.com/zjunlp/DeepKE/tree/main/example/re/standard)**
2021-11-03 16:41:21 +08:00
2021-11-30 14:26:22 +08:00
**Step1** Enter the `DeepKE/example/re/standard` folder. Download the dataset.
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
```bash
wget 120.27.214.45/Data/re/standard/data.tar.gz
tar -xzvf data.tar.gz
```
**Step2** Training<br>
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
python run.py
```
2021-11-29 19:27:55 +08:00
**Step3** Prediction
```bash
2021-11-03 16:41:21 +08:00
python predict.py
```
2021-11-30 14:26:22 +08:00
- **[FEW-SHOT](https://github.com/zjunlp/DeepKE/tree/main/example/re/few-shot)**
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
**Step1** Enter `DeepKE/example/re/few-shot`. Download the dataset.
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
```bash
wget 120.27.214.45/Data/re/few_shot/data.tar.gz
tar -xzvf data.tar.gz
```
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
**Step 2** Training<br>
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
- The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.
- Start with the model trained last time: modify `train_from_saved_model` in `conf/train.yaml`as the path where the model trained last time was saved. And the path saving logs generated in training can be customized by `log_dir`.
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
python run.py
```
2021-11-30 14:26:22 +08:00
2021-11-29 19:27:55 +08:00
**Step3** Prediction
2021-11-30 14:26:22 +08:00
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
python predict.py
```
2021-11-30 14:26:22 +08:00
- **[DOCUMENT](https://github.com/zjunlp/DeepKE/tree/main/example/re/document)**<br>
**Step1** Enter `DeepKE/example/re/document`. Download the dataset.
```bash
wget 120.27.214.45/Data/re/document/data.tar.gz
tar -xzvf data.tar.gz
```
**Step2** Training<br>
- The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.
- Start with the model trained last time: modify `train_from_saved_model` in `conf/train.yaml`as the path where the model trained last time was saved. And the path saving logs generated in training can be customized by `log_dir`.
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
python run.py
```
2021-11-30 14:26:22 +08:00
2021-11-29 19:27:55 +08:00
**Step3** Prediction
2021-11-30 14:26:22 +08:00
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
python predict.py
```
2021-10-28 21:10:37 +08:00
2022-01-14 12:23:14 +08:00
### 3. Attribute Extraction
2021-10-28 21:10:37 +08:00
2021-11-29 19:27:55 +08:00
- Attribute extraction is to extract attributes for entities in a unstructed text.
- The data is stored in `.csv` files. Some instances as following:
2021-10-28 21:10:37 +08:00
| Sentence | Att | Ent | Ent_offset | Val | Val_offset |
| :----------------------------------------------------------: | :------: | :------: | :--------: | :-----------: | :--------: |
| 张冬梅汉族1968年2月生河南淇县人 | 民族 | 张冬梅 | 0 | 汉族 | 6 |
2022-01-10 15:30:40 +08:00
|诸葛亮,字孔明,三国时期杰出的军事家、文学家、发明家。| 朝代 | 诸葛亮 | 0 | 三国时期 | 8 |
2021-10-28 21:10:37 +08:00
| 2014年10月1日许鞍华执导的电影《黄金时代》上映 | 上映时间 | 黄金时代 | 19 | 2014年10月1日 | 0 |
2021-11-29 19:27:55 +08:00
- Read the detailed process in specific README
2021-11-30 14:26:22 +08:00
- **[STANDARD (Fully Supervised)](https://github.com/zjunlp/DeepKE/tree/main/example/ae/standard)**
2021-11-03 16:41:21 +08:00
2021-11-30 14:26:22 +08:00
**Step1** Enter the `DeepKE/example/ae/standard` folder. Download the dataset.
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
```bash
wget 120.27.214.45/Data/ae/standard/data.tar.gz
tar -xzvf data.tar.gz
```
2021-11-29 19:27:55 +08:00
2021-11-30 14:26:22 +08:00
**Step2** Training<br>
The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
python run.py
```
2021-11-30 14:26:22 +08:00
2021-11-29 19:27:55 +08:00
**Step3** Prediction
2021-11-30 14:26:22 +08:00
2021-11-29 19:27:55 +08:00
```bash
2021-11-03 16:41:21 +08:00
python predict.py
```
2021-09-14 16:08:14 +08:00
2021-11-30 14:26:22 +08:00
<br>
2021-11-03 17:00:10 +08:00
2021-11-30 14:26:22 +08:00
# Notebook Tutorial
2021-11-03 17:00:10 +08:00
2021-11-29 19:27:55 +08:00
This toolkit provides many `Jupyter Notebook` and `Google Colab` tutorials. Users can study *DeepKE* with them.
2021-11-03 17:00:10 +08:00
2021-11-29 19:27:55 +08:00
- Standard Setting<br>
2021-11-03 17:00:10 +08:00
2022-01-10 22:37:13 +08:00
[NER Notebook](https://github.com/zjunlp/DeepKE/blob/main/tutorial-notebooks/ner/standard/standard_ner_tutorial.ipynb)
2021-11-29 19:27:55 +08:00
2022-01-06 19:33:50 +08:00
[NER Colab](https://colab.research.google.com/drive/1h4k6-_oNEHBRxrnzpxHPczO5SFaLS9uq?usp=sharing)
2021-11-03 17:00:10 +08:00
2022-01-10 22:37:13 +08:00
[RE Notebook](https://github.com/zjunlp/DeepKE/blob/main/tutorial-notebooks/re/standard/standard_re_pcnn_tutorial.ipynb)
2021-11-03 17:00:10 +08:00
2021-11-29 19:27:55 +08:00
[RE Colab](https://colab.research.google.com/drive/1o6rKIxBqrGZNnA2IMXqiSsY2GWANAZLl?usp=sharing)
2021-11-03 17:00:10 +08:00
2022-01-10 22:37:13 +08:00
[AE Notebook](https://github.com/zjunlp/DeepKE/blob/main/tutorial-notebooks/ae/standard/standard_ae_tutorial.ipynb)
2021-11-03 17:00:10 +08:00
2021-11-29 19:27:55 +08:00
[AE Colab](https://colab.research.google.com/drive/1pgPouEtHMR7L9Z-QfG1sPYkJfrtRt8ML)
2021-11-03 17:00:10 +08:00
2021-11-29 19:27:55 +08:00
- Low-resource<br>
2021-11-03 17:00:10 +08:00
2022-01-10 22:37:13 +08:00
[NER Notebook](https://github.com/zjunlp/DeepKE/blob/main/tutorial-notebooks/ner/few-shot/fewshot_ner_tutorial.ipynb)
2021-11-03 17:00:10 +08:00
2021-11-29 19:27:55 +08:00
[NER Colab](https://colab.research.google.com/drive/1Xz0sNpYQNbkjhebCG5djrwM8Mj2Crj7F?usp=sharing)
2021-11-03 17:00:10 +08:00
2022-01-10 22:37:13 +08:00
[RE Notebook](https://github.com/zjunlp/DeepKE/blob/main/tutorial-notebooks/re/few-shot/fewshot_re_tutorial.ipynb)
2022-01-10 22:31:57 +08:00
[RE Colab](https://colab.research.google.com/drive/1o1ly6ORgerkm1fCDjEQb7hsN5WKyg3JH?usp=sharing)
2021-11-03 17:00:10 +08:00
2021-10-28 21:17:10 +08:00
2021-11-29 19:27:55 +08:00
- Document-level<br>
2021-09-12 15:26:22 +08:00
2022-01-10 22:37:13 +08:00
[RE Notebook](https://github.com/zjunlp/DeepKE/blob/main/tutorial-notebooks/re/document/document_re_tutorial.ipynb)
2021-09-16 14:30:03 +08:00
2022-01-10 22:37:13 +08:00
[RE Colab](https://colab.research.google.com/drive/1RGUBbbOBHlWJ1NXQLtP_YEUktntHtROa?usp=sharing)
2022-01-11 17:01:47 +08:00
2021-09-28 20:13:25 +08:00
<br>
2021-11-30 14:26:22 +08:00
# Tips
2021-11-29 19:27:55 +08:00
1. Using nearest mirror, like [THU](https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/) in China, will speed up the installation of *Anaconda*.
2. Using nearest mirror, like [aliyun](http://mirrors.aliyun.com/pypi/simple/) in China, will speed up `pip install XXX`.
3. When encountering `ModuleNotFoundError: No module named 'past'`run `pip install future` .
4. It's slow to install the pretrained language models online. Recommend download pretrained models before use and save them in the `pretrained` folder. Read `README.md` in every task directory to check the specific requirement for saving pretrained models.
5. The old version of *DeepKE* is in the [deepke-v1.0](https://github.com/zjunlp/DeepKE/tree/deepke-v1.0) branch. Users can change the branch to use the old version. The old version has been totally transfered to the standard relation extraction ([example/re/standard](https://github.com/zjunlp/DeepKE/blob/main/example/re/standard/README.md)).
2021-12-16 15:37:25 +08:00
6. It's recommended to install *DeepKE* with source codes. Because user may meet some problems in Windows system with 'pip'.
2021-11-29 19:27:55 +08:00
<br>
2021-09-12 15:26:22 +08:00
2021-12-16 22:16:30 +08:00
# To do
In next version, we plan to add multi-modality knowledge extraction to the toolkit.
Meanwhile, we will offer long-term maintenance to fix bugs, solve issues and meet new requests. So if you have any problems, please put issues to us.
2022-01-14 11:59:46 +08:00
<br>
2022-01-11 14:08:27 +08:00
# Citation
2022-01-14 11:59:46 +08:00
2022-01-11 14:08:27 +08:00
Please cite our paper if you use DeepKE in your work
```bibtex
@article{Zhang_DeepKE_A_Deep_2022,
author = {Zhang, Ningyu and Xu, Xin and Tao, Liankuan and Yu, Haiyang and Ye, Hongbin and Xie, Xin and Chen, Xiang and Li, Zhoubo and Li, Lei and Liang, Xiaozhuan and Yao, Yunzhi and Deng, Shumin and Zhang, Zhenru and Tan, Chuanqi and Huang, Fei and Zheng, Guozhou and Chen, Huajun},
journal = {http://arxiv.org/abs/2201.03335},
title = {{DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population}},
year = {2022}
}
```
2022-01-14 11:59:46 +08:00
<br>
2021-11-30 14:26:22 +08:00
# Developers
2021-10-28 08:58:08 +08:00
2022-01-19 14:56:47 +08:00
Zhejiang University: Ningyu Zhang, Liankuan Tao, Xin Xu, Haiyang Yu, Hongbin Ye, Xin Xie, Xiang Chen, Zhoubo Li, Lei Li, Xiaozhuan Liang, YunzhiYao, Shuofei Qiao, Shumin Deng, Wen Zhang, Guozhou Zheng, Huajun Chen
2021-10-11 00:12:35 +08:00
2022-01-10 22:39:06 +08:00
DAMO Academy: Zhenru Zhang, Chuanqi Tan, Fei Huang