Update README
This commit is contained in:
parent
c58b226929
commit
1e00e429b4
195
README.md
195
README.md
|
@ -18,22 +18,23 @@
|
|||
|
||||
<br>
|
||||
|
||||
<h2 align="center">
|
||||
<p>A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population</p>
|
||||
</h2>
|
||||
<h1 align="center">
|
||||
<p>A Deep Learning Based Knowledge Extraction Toolkit<br>for Knowledge Base Population</p>
|
||||
</h1>
|
||||
|
||||
|
||||
DeepKE is a knowledge extraction toolkit supporting **low-resource** and **document-level** scenarios. It provides three functions based on **PyTorch**, including **Named Entity Recognition**, **Relation Extraciton** and **Attribute Extraction**.
|
||||
|
||||
<br>
|
||||
|
||||
## Prediction
|
||||
# Prediction
|
||||
|
||||
There is a demonstration of prediction.<br>
|
||||
<img src="pics/demo.gif" width="636" height="494" align=center>
|
||||
|
||||
<br>
|
||||
|
||||
## Model Framework
|
||||
# Model Framework
|
||||
|
||||
<h3 align="center">
|
||||
<img src="pics/architectures.png">
|
||||
|
@ -42,23 +43,25 @@ There is a demonstration of prediction.<br>
|
|||
Figure 1: The framework of DeepKE
|
||||
</p>
|
||||
|
||||
- DeepKE contains three modules for **named entity recognition**, **relation extraction** and **attribute extraction**, the three tasks respectively.
|
||||
- Each module has its own submodules. For example, there are **standard**, **document-level** and **few-shot** submodules in the attribute extraction modular.
|
||||
- Each submodule compose of three parts: a **collection of tools**, which can function as tokenizer, dataloader, preprocessor and the like, a **encoder** and a part for **training and prediction**
|
||||
- DeepKE contains a unified framework for **named entity recognition**, **relation extraction** and **attribute extraction**, the three knowledge extraction functions.
|
||||
- Each task can be implemented in different scenarios. For example, we can achieve relation extraction in **standard**, **low-resource (few-shot)** and **document-level** settings.
|
||||
- Each application scenario comprises of three components: **Data** including Tokenizer, Preprocessor and Loader, **Model** including Module, Encoder and Forwarder, **Core** including Training, Evaluation and Prediction.
|
||||
|
||||
<br>
|
||||
|
||||
## Quickstart
|
||||
# Quickstart
|
||||
|
||||
*DeepKE* is supported `pip install deepke`. Take the fully supervised attribute extraction for example.
|
||||
*DeepKE* is supported `pip install deepke`. Take the fully supervised relation extraction for example. <br>(Please star✨ and fork :memo: !!!)
|
||||
|
||||
**Step1** Download basic codes `git clone https://github.com/zjunlp/DeepKE.git ` (Please star✨ and fork :memo:)
|
||||
**Step1** Download the basic codes
|
||||
|
||||
**Step2** Create a virtual environment using`Anaconda` and enter it.
|
||||
|
||||
We also provide dockerfile source code, you can create your own image, which is located in the docker folder.
|
||||
```bash
|
||||
git clone https://github.com/zjunlp/DeepKE.git
|
||||
```
|
||||
|
||||
**Step2** Create a virtual environment using `Anaconda` and enter it.<br>
|
||||
|
||||
We also provide dockerfile source code, you can create your own image, which is located in the `docker` folder.
|
||||
|
||||
```bash
|
||||
conda create -n deepke python=3.8
|
||||
|
@ -86,21 +89,29 @@ conda activate deepke
|
|||
cd DeepKE/example/re/standard
|
||||
```
|
||||
|
||||
**Step4** Training (Parameters for training can be changed in the `conf` folder)
|
||||
**Step4** Download the dataset
|
||||
|
||||
```bash
|
||||
wget 120.27.214.45/Data/re/standard/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step5** Training (Parameters for training can be changed in the `conf` folder)
|
||||
|
||||
```bash
|
||||
python run.py
|
||||
```
|
||||
|
||||
**Step5** Prediction (Parameters for prediction can be changed in the `conf` folder)
|
||||
**Step6** Prediction (Parameters for prediction can be changed in the `conf` folder)
|
||||
|
||||
```bash
|
||||
python predict.py
|
||||
```
|
||||
|
||||
<br>
|
||||
|
||||
|
||||
### Requirements
|
||||
# Requirements
|
||||
|
||||
> python == 3.8
|
||||
|
||||
|
@ -117,9 +128,11 @@ python predict.py
|
|||
- opt-einsum==3.3.0
|
||||
- ujson
|
||||
|
||||
### Introduction of Three Functions
|
||||
<br>
|
||||
|
||||
#### 1. Named Entity Recognition
|
||||
# Introduction of Three Functions
|
||||
|
||||
## 1. Named Entity Recognition
|
||||
|
||||
- Named entity recognition seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, organizations, etc.
|
||||
|
||||
|
@ -134,10 +147,18 @@ python predict.py
|
|||
- Read the detailed process in specific README
|
||||
- **[STANDARD (Fully Supervised)](https://github.com/zjunlp/DeepKE/tree/main/example/ner/standard)**
|
||||
|
||||
**Step1** Enter `DeepKE/example/ner/standard`. The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.<br>
|
||||
**Step1** Enter `DeepKE/example/ner/standard`. Download the dataset.
|
||||
|
||||
**Step2** Training
|
||||
```bash
|
||||
wget 120.27.214.45/Data/ner/standard/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2** Training<br>
|
||||
|
||||
The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.
|
||||
|
||||
```bash
|
||||
python run.py
|
||||
```
|
||||
|
@ -147,26 +168,34 @@ python predict.py
|
|||
```bash
|
||||
python predict.py
|
||||
```
|
||||
|
||||
|
||||
- **[FEW-SHOT](https://github.com/zjunlp/DeepKE/tree/main/example/ner/few-shot)**
|
||||
|
||||
**Step1** Enter `DeepKE/example/ner/few-shot`. The directory where the model is loaded and saved and the configuration parameters can be cusomized in the `conf` folder.<br>
|
||||
|
||||
**Step2** Training with default `CoNLL-2003` dataset.
|
||||
**Step1** Enter `DeepKE/example/ner/few-shot`. Download the dataset.
|
||||
|
||||
```bash
|
||||
wget 120.27.214.45/Data/ner/few_shot/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2** Training in the low-resouce setting <br>
|
||||
|
||||
The directory where the model is loaded and saved and the configuration parameters can be cusomized in the `conf` folder.
|
||||
|
||||
```bash
|
||||
python run.py +train=few_shot
|
||||
```
|
||||
|
||||
Users can modify `load_path` in `conf/train/few_shot.yaml` with the use of existing loaded model.<br>
|
||||
|
||||
|
||||
Users can modify `load_path` in `conf/train/few_shot.yaml` to use existing loaded model.<br>
|
||||
|
||||
**Step3** Add `- predict` to `conf/config.yaml`, modify `loda_path` as the model path and `write_path` as the path where the predicted results are saved in `conf/predict.yaml`, and then run `python predict.py`
|
||||
|
||||
|
||||
```bash
|
||||
python predict.py
|
||||
```
|
||||
|
||||
#### 2. Relation Extraction
|
||||
## 2. Relation Extraction
|
||||
|
||||
- Relationship extraction is the task of extracting semantic relations between entities from a unstructured text.
|
||||
|
||||
|
@ -180,12 +209,20 @@ python predict.py
|
|||
|
||||
- Read the detailed process in specific README
|
||||
|
||||
- **[STANDARD (Fully Supervised)](https://github.com/zjunlp/deepke/blob/test_new_deepke/example/re/standard)**
|
||||
- **[STANDARD (Fully Supervised)](https://github.com/zjunlp/DeepKE/tree/main/example/re/standard)**
|
||||
|
||||
**Step1** Enter the `DeepKE/example/re/standard` folder. The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.<br>
|
||||
**Step1** Enter the `DeepKE/example/re/standard` folder. Download the dataset.
|
||||
|
||||
**Step2** Training
|
||||
```bash
|
||||
wget 120.27.214.45/Data/re/standard/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2** Training<br>
|
||||
|
||||
The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.
|
||||
|
||||
```bash
|
||||
python run.py
|
||||
```
|
||||
|
@ -195,42 +232,58 @@ python predict.py
|
|||
```bash
|
||||
python predict.py
|
||||
```
|
||||
|
||||
- **[FEW-SHOT](https://github.com/zjunlp/DeepKE/tree/main/example/re/few-shot)**
|
||||
|
||||
- **[FEW-SHOT](https://github.com/zjunlp/deepke/blob/test_new_deepke/example/re/few-shot)**
|
||||
**Step1** Enter `DeepKE/example/re/few-shot`. Download the dataset.
|
||||
|
||||
**Step1** Enter `DeepKE/example/re/few-shot`. The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.<br>
|
||||
```bash
|
||||
wget 120.27.214.45/Data/re/few_shot/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step 2** Training. Start with the model trained last time: modify `train_from_saved_model` in `conf/train.yaml`as the path where the model trained last time was saved. And the path saving logs generated in training can be customized by `log_dir`. <br>
|
||||
**Step 2** Training<br>
|
||||
|
||||
- The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.
|
||||
- Start with the model trained last time: modify `train_from_saved_model` in `conf/train.yaml`as the path where the model trained last time was saved. And the path saving logs generated in training can be customized by `log_dir`.
|
||||
|
||||
```bash
|
||||
python run.py
|
||||
```
|
||||
|
||||
|
||||
**Step3** Prediction
|
||||
|
||||
|
||||
```bash
|
||||
python predict.py
|
||||
```
|
||||
|
||||
- **[DOCUMENT](https://github.com/zjunlp/DeepKE/tree/main/example/re/document)**<br>
|
||||
|
||||
**Step1** Enter `DeepKE/example/re/document`. Download the dataset.
|
||||
|
||||
```bash
|
||||
wget 120.27.214.45/Data/re/document/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2** Training<br>
|
||||
|
||||
- The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.
|
||||
- Start with the model trained last time: modify `train_from_saved_model` in `conf/train.yaml`as the path where the model trained last time was saved. And the path saving logs generated in training can be customized by `log_dir`.
|
||||
|
||||
```bash
|
||||
python run.py
|
||||
```
|
||||
|
||||
**Step3** Prediction
|
||||
|
||||
```bash
|
||||
python predict.py
|
||||
```
|
||||
|
||||
- **[DOCUMENT](https://github.com/zjunlp/deepke/blob/test_new_deepke/example/re/document)**<br>
|
||||
|
||||
Download the model `train_distant.json` from [*Google Drive*](https://drive.google.com/drive/folders/1c5-0YwnoJx8NS6CV2f-NoTHR__BdkNqw) to `data/`.
|
||||
|
||||
**Step1** Enter `DeepKE/example/re/document`. The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.<br>
|
||||
|
||||
**Step2** Training. Start with the model trained last time: modify `train_from_saved_model` in `conf/train.yaml`as the path where the model trained last time was saved. And the path saving logs generated in training can be customized by `log_dir`.
|
||||
|
||||
```bash
|
||||
python run.py
|
||||
```
|
||||
|
||||
**Step3** Prediction
|
||||
|
||||
```bash
|
||||
python predict.py
|
||||
```
|
||||
|
||||
#### 3. Attribute Extraction
|
||||
## 3. Attribute Extraction
|
||||
|
||||
- Attribute extraction is to extract attributes for entities in a unstructed text.
|
||||
|
||||
|
@ -243,25 +296,33 @@ python predict.py
|
|||
| 2014年10月1日许鞍华执导的电影《黄金时代》上映 | 上映时间 | 黄金时代 | 19 | 2014年10月1日 | 0 |
|
||||
|
||||
- Read the detailed process in specific README
|
||||
- **[STANDARD (Fully Supervised)](https://github.com/zjunlp/deepke/blob/test_new_deepke/example/ae/standard)**
|
||||
- **[STANDARD (Fully Supervised)](https://github.com/zjunlp/DeepKE/tree/main/example/ae/standard)**
|
||||
|
||||
**Step1** Enter the `DeepKE/example/ae/standard` folder. The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.<br>
|
||||
**Step1** Enter the `DeepKE/example/ae/standard` folder. Download the dataset.
|
||||
|
||||
**Step2** Training
|
||||
```bash
|
||||
wget 120.27.214.45/Data/ae/standard/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2** Training<br>
|
||||
|
||||
The dataset and parameters can be customized in the `data` folder and `conf` folder respectively.
|
||||
|
||||
```bash
|
||||
python run.py
|
||||
```
|
||||
|
||||
|
||||
**Step3** Prediction
|
||||
|
||||
|
||||
```bash
|
||||
python predict.py
|
||||
```
|
||||
|
||||
<br>
|
||||
|
||||
|
||||
## Notebook Tutorial
|
||||
# Notebook Tutorial
|
||||
|
||||
This toolkit provides many `Jupyter Notebook` and `Google Colab` tutorials. Users can study *DeepKE* with them.
|
||||
|
||||
|
@ -297,7 +358,7 @@ This toolkit provides many `Jupyter Notebook` and `Google Colab` tutorials. User
|
|||
|
||||
<br>
|
||||
|
||||
## Tips
|
||||
# Tips
|
||||
|
||||
1. Using nearest mirror, like [THU](https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/) in China, will speed up the installation of *Anaconda*.
|
||||
2. Using nearest mirror, like [aliyun](http://mirrors.aliyun.com/pypi/simple/) in China, will speed up `pip install XXX`.
|
||||
|
@ -307,7 +368,7 @@ This toolkit provides many `Jupyter Notebook` and `Google Colab` tutorials. User
|
|||
|
||||
<br>
|
||||
|
||||
## Developers
|
||||
# Developers
|
||||
|
||||
Zhejiang University: Ningyu Zhang, Liankuan Tao, Haiyang Yu, Xiang Chen, Xin Xu, Xi Tian, Lei Li, Zhoubo Li, Shumin Deng, Yunzhi Yao, Hongbin Ye, Xin Xie, Guozhou Zheng, Huajun Chen
|
||||
|
||||
|
|
118
README_CN.md
118
README_CN.md
|
@ -47,9 +47,9 @@ DeepKE包括了三个模块,可以进行命名实体识别、关系抽取以
|
|||
|
||||
DeepKE支持pip安装使用,以常规全监督设定关系抽取为例,经过以下五个步骤就可以实现一个常规关系抽取模型
|
||||
|
||||
**Step 1** 下载代码 ```git clone https://github.com/zjunlp/DeepKE.git```(别忘记star和fork哈!!!)
|
||||
**Step 1**:下载代码 ```git clone https://github.com/zjunlp/DeepKE.git```(别忘记star和fork哈!!!)
|
||||
|
||||
**Step 2** 使用anaconda创建虚拟环境,进入虚拟环境(提供Dockerfile源码可自行创建镜像,位于docker文件夹中)
|
||||
**Step 2**:使用anaconda创建虚拟环境,进入虚拟环境(提供Dockerfile源码可自行创建镜像,位于docker文件夹中)
|
||||
|
||||
```
|
||||
conda create -n deepke python=3.8
|
||||
|
@ -70,24 +70,26 @@ python setup.py install
|
|||
python setup.py develop
|
||||
```
|
||||
|
||||
**Step 3** 进入任务文件夹,以常规关系抽取为例
|
||||
**Step 3** :进入任务文件夹,以常规关系抽取为例
|
||||
|
||||
```
|
||||
cd DeepKE/example/re/standard
|
||||
```
|
||||
|
||||
**Step 4** 模型训练,训练用到的参数可在conf文件夹内修改
|
||||
**Step 4** :模型训练,训练用到的参数可在conf文件夹内修改
|
||||
|
||||
```
|
||||
python run.py
|
||||
```
|
||||
|
||||
**Step 5** 模型预测。预测用到的参数可在conf文件夹内修改
|
||||
**Step 5** :模型预测。预测用到的参数可在conf文件夹内修改
|
||||
|
||||
```
|
||||
python predict.py
|
||||
```
|
||||
|
||||
<br>
|
||||
|
||||
### 环境依赖
|
||||
|
||||
> python == 3.8
|
||||
|
@ -118,11 +120,19 @@ python predict.py
|
|||
| 秦始皇兵马俑位于陕西省西安市,1961年被国务院公布为第一批全国重点文物保护单位,是世界八大奇迹之一。 | 秦始皇 | 陕西省,西安市 | 国务院 |
|
||||
|
||||
- 具体流程请进入详细的README中
|
||||
- **[常规全监督STANDARD](https://github.com/zjunlp/deepke/blob/main/example/ner/standard)**
|
||||
- **[常规全监督STANDARD](https://github.com/zjunlp/DeepKE/tree/main/example/ner/standard)**
|
||||
|
||||
**Step1**: 进入`DeepKE/example/ner/standard`,数据集和参数配置可以分别在`data`和`conf`文件夹中修改;<br>
|
||||
**Step1**: 进入`DeepKE/example/ner/standard`,下载数据集
|
||||
|
||||
**Step2**: 模型训练
|
||||
```bash
|
||||
wget 120.27.214.45/Data/ner/standard/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2**: 模型训练<br>
|
||||
|
||||
数据集和参数配置可以分别在`data`和`conf`文件夹中修改
|
||||
|
||||
```
|
||||
python run.py
|
||||
|
@ -135,9 +145,17 @@ python predict.py
|
|||
|
||||
- **[少样本FEW-SHOT](https://github.com/zjunlp/DeepKE/tree/main/example/ner/few-shot)**
|
||||
|
||||
**Step1**: 进入`DeepKE/example/ner/few-shot`,模型加载和保存位置以及参数配置可以在`conf`文件夹中修改;<br>
|
||||
**Step1**: 进入`DeepKE/example/ner/few-shot`,下载数据集
|
||||
|
||||
**Step2**:模型训练,默认使用`CoNLL-2003`数据集进行训练
|
||||
```bash
|
||||
wget 120.27.214.45/Data/ner/few_shot/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2**:低资源场景下训练模型<br>
|
||||
|
||||
模型加载和保存位置以及参数配置可以在`conf`文件夹中修改
|
||||
|
||||
```
|
||||
python run.py +train=few_shot
|
||||
|
@ -162,45 +180,71 @@ python predict.py
|
|||
| 提起杭州的美景,西湖总是第一个映入脑海的词语。 | 所在城市 | 西湖 | 8 | 杭州 | 2 |
|
||||
|
||||
- 具体流程请进入详细的README中,RE包括了以下三个子功能
|
||||
- **[常规全监督STANDARD](https://github.com/zjunlp/deepke/blob/main/example/re/standard)**
|
||||
- **[常规全监督STANDARD](https://github.com/zjunlp/DeepKE/tree/main/example/re/standard)**
|
||||
|
||||
**Step1**:进入`DeepKE/example/re/standard`,数据集和参数配置可以分别进入`data`和`conf`文件夹中修改;<br>
|
||||
**Step1**:进入`DeepKE/example/re/standard`,下载数据集
|
||||
|
||||
```bash
|
||||
wget 120.27.214.45/Data/re/standard/data.tar.gz
|
||||
|
||||
**Step2**:模型训练
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2**:模型训练<br>
|
||||
|
||||
数据集和参数配置可以分别进入`data`和`conf`文件夹中修改
|
||||
|
||||
```
|
||||
python run.py
|
||||
```
|
||||
|
||||
|
||||
**Step3**:模型预测
|
||||
|
||||
|
||||
```
|
||||
python predict.py
|
||||
```
|
||||
|
||||
- **[少样本FEW-SHOT](https://github.com/zjunlp/deepke/blob/main/example/re/few-shot)**
|
||||
- **[少样本FEW-SHOT](https://github.com/zjunlp/DeepKE/tree/main/example/re/few-shot)**
|
||||
|
||||
**Step1**:进入`DeepKE/example/re/few-shot`,数据集和参数配置可以分别进入`data`和`conf`文件夹中修改;<br>
|
||||
|
||||
**Step2**:模型训练,如需从上次训练的模型开始训练:设置`conf/train.yaml`中的`train_from_saved_model`为上次保存模型的路径,每次训练的日志默认保存在根目录,可用`log_dir`来配置;<br>
|
||||
**Step1**:进入`DeepKE/example/re/few-shot`,下载数据集
|
||||
|
||||
```bash
|
||||
wget 120.27.214.45/Data/re/few_shot/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2**:模型训练<br>
|
||||
|
||||
- 数据集和参数配置可以分别进入`data`和`conf`文件夹中修改
|
||||
|
||||
- 如需从上次训练的模型开始训练:设置`conf/train.yaml`中的`train_from_saved_model`为上次保存模型的路径,每次训练的日志默认保存在根目录,可用`log_dir`来配置
|
||||
|
||||
```
|
||||
python run.py
|
||||
```
|
||||
|
||||
|
||||
**Step3**:模型预测
|
||||
|
||||
|
||||
```
|
||||
python predict.py
|
||||
```
|
||||
|
||||
- **[文档级DOCUMENT](https://github.com/zjunlp/deepke/blob/main/example/re/document)** <br>
|
||||
```train_distant.json```由于文件太大,请自行从Google Drive上下载到data/目录下;<br>
|
||||
|
||||
- **[文档级DOCUMENT](https://github.com/zjunlp/DeepKE/tree/main/example/re/document)** <br>
|
||||
|
||||
**Step1**:进入`DeepKE/example/re/document`,下载数据集
|
||||
|
||||
```bash
|
||||
wget 120.27.214.45/Data/re/document/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2**:模型训练<br>
|
||||
|
||||
- 数据集和参数配置可以分别进入`data`和`conf`文件夹中修改
|
||||
- 如需从上次训练的模型开始训练:设置`conf/train.yaml`中的`train_from_saved_model`为上次保存模型的路径,每次训练的日志默认保存在根目录,可用`log_dir`来配置;
|
||||
|
||||
**Step1**:进入`DeepKE/example/re/document`,数据集和参数配置可以分别进入`data`和`conf`文件夹中修改;<br>
|
||||
|
||||
**Step2**:模型训练,如需从上次训练的模型开始训练:设置`conf/train.yaml`中的`train_from_saved_model`为上次保存模型的路径,每次训练的日志默认保存在根目录,可用`log_dir`来配置;
|
||||
|
||||
```
|
||||
python run.py
|
||||
```
|
||||
|
@ -221,22 +265,32 @@ python predict.py
|
|||
| 2014年10月1日许鞍华执导的电影《黄金时代》上映 | 上映时间 | 黄金时代 | 19 | 2014年10月1日 | 0 |
|
||||
|
||||
- 具体流程请进入详细的README中
|
||||
- **[常规全监督STANDARD](https://github.com/zjunlp/deepke/blob/main/example/ae/standard)**
|
||||
- **[常规全监督STANDARD](https://github.com/zjunlp/DeepKE/tree/main/example/ae/standard)**
|
||||
|
||||
**Step1**:进入`DeepKE/example/re/standard`,数据集和参数配置可以分别进入`data`和`conf`文件夹中修改;<br>
|
||||
**Step1**:进入`DeepKE/example/re/standard`,下载数据集
|
||||
|
||||
**Step2**:模型训练
|
||||
```bash
|
||||
wget 120.27.214.45/Data/ae/standard/data.tar.gz
|
||||
|
||||
tar -xzvf data.tar.gz
|
||||
```
|
||||
|
||||
**Step2**:模型训练<br>
|
||||
|
||||
数据集和参数配置可以分别进入`data`和`conf`文件夹中修改
|
||||
|
||||
```
|
||||
python run.py
|
||||
```
|
||||
|
||||
**Step3**:模型预测
|
||||
|
||||
|
||||
```
|
||||
python predict.py
|
||||
```
|
||||
|
||||
<br>
|
||||
|
||||
### Notebook教程
|
||||
|
||||
本工具提供了若干Notebook和Google Colab教程,用户可针对性调试学习。
|
||||
|
|
Loading…
Reference in New Issue