/* * Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved. * Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "los_task_pri.h" #ifdef LOSCFG_KERNEL_SCHED_STATISTICS #define HIGHTASKPRI 16 #define NS_PER_MS 1000000 #define DECIMAL_TO_PERCENTAGE 100 typedef struct { UINT64 idleRuntime; UINT64 idleStarttime; UINT64 highTaskRuntime; UINT64 highTaskStarttime; UINT64 spinWaitRuntime; UINT64 sumPriority; UINT32 prioritySwitch; UINT32 highTaskSwitch; UINT32 contexSwitch; UINT32 hwiNum; UINT32 ipiIrqNum; } MpStatPercpu; STATIC BOOL g_mpStaticStartFlag = FALSE; STATIC UINT64 g_mpStaticStartTime; STATIC MpStatPercpu g_mpStatPercpu[LOSCFG_KERNEL_SMP_CORE_NUM] = {0}; STATIC VOID OsMpSchedStatistics(LosTaskCB *runTask, LosTaskCB *newTask) { UINT32 cpuid; UINT32 idleTaskID; UINT64 now, runtime; if (g_mpStaticStartFlag != TRUE) { return; } cpuid = ArchCurrCpuid(); idleTaskID = OsGetIdleTaskId(); now = LOS_CurrNanosec(); g_mpStatPercpu[cpuid].contexSwitch++; if ((runTask->taskID != idleTaskID) && (newTask->taskID == idleTaskID)) { g_mpStatPercpu[cpuid].idleStarttime = now; } if ((runTask->taskID == idleTaskID) && (newTask->taskID != idleTaskID)) { runtime = now - g_mpStatPercpu[cpuid].idleStarttime; g_mpStatPercpu[cpuid].idleRuntime += runtime; g_mpStatPercpu[cpuid].idleStarttime = 0; } if ((runTask->priority >= HIGHTASKPRI) && (newTask->priority < HIGHTASKPRI)) { g_mpStatPercpu[cpuid].highTaskStarttime = now; } if ((runTask->priority < HIGHTASKPRI) && (newTask->priority >= HIGHTASKPRI)) { runtime = now - g_mpStatPercpu[cpuid].highTaskStarttime; g_mpStatPercpu[cpuid].highTaskRuntime += runtime; g_mpStatPercpu[cpuid].highTaskStarttime = 0; } if (newTask->priority < HIGHTASKPRI) { g_mpStatPercpu[cpuid].highTaskSwitch++; } if (newTask->taskID != idleTaskID) { g_mpStatPercpu[cpuid].sumPriority += newTask->priority; g_mpStatPercpu[cpuid].prioritySwitch++; } return; } LITE_OS_SEC_TEXT_MINOR VOID OsSchedStatistics(LosTaskCB *runTask, LosTaskCB *newTask) { UINT64 runtime; UINT32 cpuid = ArchCurrCpuid(); UINT64 now = LOS_CurrNanosec(); SchedStat *schedRun = &runTask->schedStat; SchedStat *schedNew = &newTask->schedStat; SchedPercpu *cpuRun = &schedRun->schedPercpu[cpuid]; SchedPercpu *cpuNew = &schedNew->schedPercpu[cpuid]; /* calculate one chance of running time */ runtime = now - schedRun->startRuntime; /* add running timer to running task statistics */ cpuRun->runtime += runtime; schedRun->allRuntime += runtime; /* add context switch counters and schedule start time */ cpuNew->contexSwitch++; schedNew->allContextSwitch++; schedNew->startRuntime = now; OsMpSchedStatistics(runTask, newTask); } LITE_OS_SEC_TEXT_MINOR VOID OsSpinWaitStatistics(UINT64 spinWaitRuntime) { UINT32 cpuid = ArchCurrCpuid(); g_mpStatPercpu[cpuid].spinWaitRuntime += spinWaitRuntime; return; } LITE_OS_SEC_TEXT_MINOR VOID OsHwiStatistics(size_t intNum) { UINT32 cpuid = ArchCurrCpuid(); if ((g_mpStaticStartFlag != TRUE) || (intNum == OS_TICK_INT_NUM)) { return; } g_mpStatPercpu[cpuid].hwiNum++; /* 16: 0~15 is ipi interrupts */ if (intNum < 16) { g_mpStatPercpu[cpuid].ipiIrqNum++; } return; } LITE_OS_SEC_TEXT_MINOR VOID OsShellCmdDumpSched(VOID) { LosTaskCB *taskCB = NULL; UINT32 loop; UINT32 cpuid; UINT32 affinity; PRINTK("\n"); PRINTK("Task TID Total Time Total CST " "CPU Time CST\n"); PRINTK("---- --- ------------------ ---------- -" "--- ------------------ ----------\n"); for (loop = 0; loop < g_taskMaxNum; loop++) { taskCB = (((LosTaskCB *)g_taskCBArray) + loop); if (OsTaskIsUnused(taskCB)) { continue; } affinity = (UINT32)taskCB->cpuAffiMask; PRINTK("%-30s0x%-6x%+16lf ms %10d\n", taskCB->taskName, taskCB->taskID, (DOUBLE)(taskCB->schedStat.allRuntime) / NS_PER_MS, taskCB->schedStat.allContextSwitch); for (cpuid = 0; cpuid < LOSCFG_KERNEL_CORE_NUM; cpuid++) { if (!((1U << cpuid) & affinity)) { continue; } PRINTK(" " "CPU%d %+16lf ms %12d\n", cpuid, (DOUBLE)(taskCB->schedStat.schedPercpu[cpuid].runtime) / NS_PER_MS, taskCB->schedStat.schedPercpu[cpuid].contexSwitch); } } PRINTK("\n"); } LITE_OS_SEC_TEXT_MINOR VOID OsShellMpStaticStart(VOID) { LosTaskCB *taskCB = NULL; UINT32 loop; UINT32 cpuid = 0; UINT32 intSave; SCHEDULER_LOCK(intSave); if (g_mpStaticStartFlag) { PRINT_WARN("mp static has started\n"); SCHEDULER_UNLOCK(intSave); return; } g_mpStaticStartTime = LOS_CurrNanosec(); for (loop = 0; loop < g_taskMaxNum; loop++) { taskCB = (((LosTaskCB *)g_taskCBArray) + loop); if (taskCB->taskStatus & OS_TASK_STATUS_RUNNING) { #ifdef LOSCFG_KERNEL_SMP cpuid = taskCB->currCpu; #endif if ((UINT32)(OS_TASK_INVALID_CPUID) == cpuid) { continue; } if (!strcmp(taskCB->taskName, "Idle")) { g_mpStatPercpu[cpuid].idleStarttime = g_mpStaticStartTime; } if (taskCB->priority < HIGHTASKPRI) { g_mpStatPercpu[cpuid].highTaskStarttime = g_mpStaticStartTime; g_mpStatPercpu[cpuid].highTaskSwitch++; } if (strcmp(taskCB->taskName, "Idle")) { g_mpStatPercpu[cpuid].sumPriority += taskCB->priority; g_mpStatPercpu[cpuid].prioritySwitch++; } } } g_mpStaticStartFlag = TRUE; SCHEDULER_UNLOCK(intSave); PRINTK("mp static start\n"); return; } LITE_OS_SEC_TEXT_MINOR VOID OsMpStaticShow(UINT64 mpStaticPastTime) { UINT32 cpuid; PRINTK("\n"); PRINTK("Passed Time: %+16lf ms\n", (DOUBLE)mpStaticPastTime / NS_PER_MS); PRINTK("--------------------------------\n"); PRINTK("CPU Idle(%%) schedule noTick Hwi MP Hwi MP Loss(%%) " "avg PRI HiTSK(%%) HiTSK SCH HiTSK P(ms)\n"); PRINTK("---- --------- ---------- ---------- ---------- ---------- " "---------- ---------- ---------- ----------\n"); for (cpuid = 0; cpuid < LOSCFG_KERNEL_CORE_NUM; cpuid++) { PRINTK("CPU%d %+10lf%14d%14d%14d %+11lf %+11lf %+11lf%14d %+11lf\n", cpuid, ((DOUBLE)(g_mpStatPercpu[cpuid].idleRuntime) / mpStaticPastTime) * DECIMAL_TO_PERCENTAGE, g_mpStatPercpu[cpuid].contexSwitch, g_mpStatPercpu[cpuid].hwiNum, g_mpStatPercpu[cpuid].ipiIrqNum, ((DOUBLE)(g_mpStatPercpu[cpuid].spinWaitRuntime) / mpStaticPastTime) * DECIMAL_TO_PERCENTAGE, (g_mpStatPercpu[cpuid].prioritySwitch == 0) ? OS_TASK_PRIORITY_LOWEST : ((DOUBLE)(g_mpStatPercpu[cpuid].sumPriority) / (g_mpStatPercpu[cpuid].prioritySwitch)), ((DOUBLE)(g_mpStatPercpu[cpuid].highTaskRuntime) / mpStaticPastTime) * DECIMAL_TO_PERCENTAGE, g_mpStatPercpu[cpuid].highTaskSwitch, (g_mpStatPercpu[cpuid].highTaskSwitch == 0) ? 0 : ((DOUBLE)(g_mpStatPercpu[cpuid].highTaskRuntime) / (g_mpStatPercpu[cpuid].highTaskSwitch)) / NS_PER_MS); } PRINTK("\n"); } LITE_OS_SEC_TEXT_MINOR VOID OsShellMpStaticStop(VOID) { LosTaskCB *taskCB = NULL; UINT32 loop; UINT32 cpuid = 0; UINT64 mpStaticStopTime; UINT64 mpStaticPastTime; UINT64 runtime; UINT32 intSave; SCHEDULER_LOCK(intSave); if (g_mpStaticStartFlag != TRUE) { PRINT_WARN("Please set mp static start\n"); SCHEDULER_UNLOCK(intSave); return; } g_mpStaticStartFlag = FALSE; mpStaticStopTime = LOS_CurrNanosec(); mpStaticPastTime = mpStaticStopTime - g_mpStaticStartTime; for (loop = 0; loop < g_taskMaxNum; loop++) { taskCB = (((LosTaskCB *)g_taskCBArray) + loop); if (taskCB->taskStatus & OS_TASK_STATUS_RUNNING) { #ifdef LOSCFG_KERNEL_SMP cpuid = taskCB->currCpu; #endif if (cpuid == (UINT32)(OS_TASK_INVALID_CPUID)) { continue; } if (!strcmp(taskCB->taskName, "Idle")) { runtime = mpStaticStopTime - g_mpStatPercpu[cpuid].idleStarttime; g_mpStatPercpu[cpuid].idleRuntime += runtime; g_mpStatPercpu[cpuid].idleStarttime = 0; } if (taskCB->priority < HIGHTASKPRI) { runtime = mpStaticStopTime - g_mpStatPercpu[cpuid].highTaskStarttime; g_mpStatPercpu[cpuid].highTaskRuntime += runtime; g_mpStatPercpu[cpuid].highTaskStarttime = 0; } } } SCHEDULER_UNLOCK(intSave); OsMpStaticShow(mpStaticPastTime); (VOID)memset_s(g_mpStatPercpu, sizeof(g_mpStatPercpu), 0, sizeof(g_mpStatPercpu)); g_mpStaticStartTime = 0; return; } #endif