Go to file
Guangyao Ma 565b2e85cd refactor(mksh): reduce the mksh size by Oz
clang不支持“-flto,-Oz”作为链接选项,但是可以作为编译选项,且作为编译选项时,有更好的size减少效果。这里为了使用这种
编译选项组合,且为了不影响链接过程(Build.sh链接时也会使用CFLAGS),在链接选项生效的-O选项中,重置其为O2。
最终size可以从300+k,缩减为不到180k。

Close #I3UVEV

Change-Id: If29ac4a058bcd40c4c36deb484c9468c93bcd1ec
Signed-off-by: Guangyao Ma <guangyao.ma@outlook.com>
2021-06-08 21:57:27 +08:00
.gitee add issue and pr template 2021-04-07 14:49:32 +08:00
apps refactor(mksh): reduce the mksh size by Oz 2021-06-08 21:57:27 +08:00
arch refactor: Refactored the kernel boot process and added a init framework 2021-05-20 16:45:43 +08:00
bsd remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
compat/posix refactor: Refactored the kernel boot process and added a init framework 2021-05-20 16:45:43 +08:00
drivers/char refactor: Refactored the kernel boot process and added a init framework 2021-05-20 16:45:43 +08:00
figures update openharmony 1.0.1 2021-03-11 18:43:57 +08:00
fs refactor: Refactored the kernel boot process and added a init framework 2021-05-20 16:45:43 +08:00
kernel !252 删除冗余宏定义OFFSET_OF_FIELD 2021-05-21 09:54:18 +08:00
lib remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
net remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
platform refactor: Refactored the kernel boot process and added a init framework 2021-05-20 16:45:43 +08:00
security remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
shell refactor: Refactored the kernel boot process and added a init framework 2021-05-20 16:45:43 +08:00
syscall refactor: Refactored the kernel boot process and added a init framework 2021-05-20 16:45:43 +08:00
testsuites update testsuites/unittest/process/mutex/process_mutex_test.cpp. 2021-05-20 18:54:14 +08:00
tools refactor: Refactored the kernel boot process and added a init framework 2021-05-20 16:45:43 +08:00
.gitignore fix: Show conflicting files for git apply or patch -p command 2021-04-22 16:44:46 +08:00
BUILD.gn testsuites fixed 2021-04-30 15:07:26 +08:00
Kconfig fix: Remove redundant invalid codes 2021-05-17 14:34:09 +08:00
LICENSE update openharmony 1.0.1 2021-03-11 18:43:57 +08:00
Makefile use -include option instead of including menuconfig manually 2021-04-14 17:56:48 +08:00
README.md TicketNo:DTS2021012805GXU8P0H00 2021-03-16 16:54:09 +08:00
README_zh-HK.md add README_zh-HK.md. 2021-03-29 12:01:23 +08:00
README_zh.md TicketNo:DTS2021012805GXU8P0H00 2021-03-16 16:54:09 +08:00
build.sh [Desc]Modify the vendor configuration file path because the product_path 2021-03-23 22:23:19 +08:00
config.mk remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
kernel_test.sources remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00

README.md

LiteOS Cortex-A

Introduction

The OpenHarmony LiteOS Cortex-A is a new-generation kernel developed based on the Huawei LiteOS kernel. Huawei LiteOS is a lightweight operating system OS built for the Internet of Things IoT field. With the rapid development of the IoT industry, OpenHarmony LiteOS Cortex-A brings small-sized, low-power, and high-performance experience and builds a unified and open ecosystem for developers. In addition, it provides rich kernel mechanisms, more comprehensive Portable Operating System Interface POSIX, and a unified driver framework, Hardware Driver Foundation HDF, which offers unified access for device developers and friendly development experience for application developers. Figure 1 shows the architecture of the OpenHarmony LiteOS Cortex-A kernel.

Figure 1 Architecture of the OpenHarmony LiteOS Cortex-A kernel

Directory Structure

/kernel/liteos_a
├── apps                   # User-space init and shell application programs
├── arch                   # System architecture, such as ARM
│   └── arm                # Code for ARM architecture
├── bsd                    # Code of the driver and adaptation layer module related to the FreeBSD, such as the USB module
├── compat                 # Kernel API compatibility
│   └── posix              # POSIX APIs
├── drivers                # Kernel drivers
│   └── char               # Character device
│       ├── mem            # Driver for accessing physical input/output (I/O) devices
│       ├── quickstart     # APIs for quick start of the system
│       ├── random         # Driver for random number generators
│       └── video          # Framework of the framebuffer driver
├── fs                     # File system module, which mainly derives from the NuttX open-source project
│   ├── fat                # FAT file system
│   ├── jffs2              # JFFS2 file system
│   ├── include            # Header files exposed externally
│   ├── nfs                # NFS file system
│   ├── proc               # proc file system
│   ├── ramfs              # RAMFS file system
│   └── vfs                # VFS layer
├── kernel                 # Kernel modules including the process, memory, and IPC modules
│   ├── base               # Basic kernel modules including the scheduling and memory modules
│   ├── common             # Common components used by the kernel
│   ├── extended           # Extended kernel modules including the dynamic loading, vDSO, and LiteIPC modules
│   ├── include            # Header files exposed externally
│   └── user               # Init process loading
├── lib                    # Kernel library
├── net                    # Network module, which mainly derives from the lwIP open-source project
├── platform               # Code for supporting different systems on a chip (SOCs), such as Hi3516D V300
│   ├── hw                 # Logic code related to clocks and interrupts
│   ├── include            # Header files exposed externally
│   └── uart               # Logic code related to the serial port
├── platform               # Code for supporting different systems on a chip (SOCs), such as Hi3516D V300
├── security               # Code related to security features, including process permission management and virtual ID mapping management
├── syscall                # System calling
└── tools                  # Building tools as well as related configuration and code

Constraints

  • Programming languages: C and C++
  • Applicable development boards: Hi3518E V300 and Hi3516D V300
  • Hi3518E V300 uses the JFFS2 file system by default, and Hi3516D V300 uses the FAT file system by default.

Usage

OpenHarmony LiteOS Cortex-A supports the Hi3518E V300 and Hi3516D V300. You can develop and run your applications based on both development boards.

Preparations

You need to set up the compilation environment on Linux.

Source Code Acquisition

Download and decompress a set of source code on a Linux server to acquire the source code. For more acquisition methods, see Source Code Acquisition.

Compilation and Building

For details about how to develop the first application, see:

Repositories Involved

Kernel subsystem

drivers_liteos

kernel_liteos_a