Go to file
Haryslee 9fdb80f85f fix: 共享内存问题修复
Signed-off-by: Haryslee <lihao189@huawei.com>
背景:父进程移除共享内存并标记SHM_SEG_REMOVE,当子进程资源回收时在
ShmFindSeg接口中判断该共享内存具有SHM_SEG_REMOVE时返回空,但是此时
seg->ds.shm_nattch不为0,不应返回空。
方案:ShmFindSeg接口中增加seg->ds.shm_nattch为0的判断。

close #I47X2Z

Change-Id: I8735cd11ac237b17fa745c50313da0fd0649bb9f
2021-09-23 21:04:36 +08:00
.gitee add issue and pr template 2021-04-07 14:49:32 +08:00
apps refactor: 清理Makefile冗余项 2021-09-13 18:14:15 +08:00
arch !534 pagecache从filep改为使用vnode 2021-09-15 03:51:50 +00:00
bsd refactor: 清理Makefile冗余项 2021-09-13 18:14:15 +08:00
compat refactor: 清理Makefile冗余项 2021-09-13 18:14:15 +08:00
drivers refactor: 清理Makefile冗余项 2021-09-13 18:14:15 +08:00
figures update openharmony 1.0.1 2021-03-11 18:43:57 +08:00
fs !623 procfs 使用统一的权限 2021-09-16 11:35:42 +00:00
kernel fix: 共享内存问题修复 2021-09-23 21:04:36 +08:00
lib refactor: 清理Makefile冗余项 2021-09-13 18:14:15 +08:00
net chore: add default group automatly if needed 2021-08-06 12:05:56 +08:00
platform refactor: 内核目录结构整理 2021-09-08 16:36:28 +08:00
security refactor: 清理Makefile冗余项 2021-09-13 18:14:15 +08:00
shell refactor: 清理Makefile冗余项 2021-09-13 18:14:15 +08:00
syscall refactor: 清理Makefile冗余项 2021-09-13 18:14:15 +08:00
testsuites refactor: 内核目录结构整理 2021-09-08 16:36:28 +08:00
tools refactor: 清理Makefile冗余项 2021-09-13 18:14:15 +08:00
.gitignore chore(make): fix and optimize some build scripts 2021-08-23 20:47:18 +08:00
BUILD.gn refactor: 内核目录结构整理 2021-09-08 16:36:28 +08:00
Kconfig refactor: 内核目录结构整理 2021-09-08 16:36:28 +08:00
LICENSE update openharmony 1.0.1 2021-03-11 18:43:57 +08:00
Makefile chore: optimize build scripts and add lto config entry 2021-08-31 12:04:34 +08:00
OAT.xml chore(oat): 删除二进制文件,并且新增oat屏蔽 2021-08-06 01:41:09 +08:00
README.md fix: 修复文档链接失效问题 2021-08-12 14:21:35 +08:00
README_zh-HK.md fix: 修复文档链接失效问题 2021-08-12 14:21:35 +08:00
README_zh.md fix: 修复文档链接失效问题 2021-08-12 14:21:35 +08:00
build.sh chore(build): optimize build scripts, remove unused config files 2021-09-01 12:39:55 +08:00
config.mk chore(make): simplify build scripts 2021-09-09 18:56:47 +08:00
liteos.gni chore: optimize build scripts and add lto config entry 2021-08-31 12:04:34 +08:00

README.md

LiteOS Cortex-A

Introduction

The OpenHarmony LiteOS Cortex-A is a new-generation kernel developed based on the Huawei LiteOS kernel. Huawei LiteOS is a lightweight operating system OS built for the Internet of Things IoT field. With the rapid development of the IoT industry, OpenHarmony LiteOS Cortex-A brings small-sized, low-power, and high-performance experience and builds a unified and open ecosystem for developers. In addition, it provides rich kernel mechanisms, more comprehensive Portable Operating System Interface POSIX, and a unified driver framework, Hardware Driver Foundation HDF, which offers unified access for device developers and friendly development experience for application developers. Figure 1 shows the architecture of the OpenHarmony LiteOS Cortex-A kernel.

Figure 1 Architecture of the OpenHarmony LiteOS Cortex-A kernel

Directory Structure

/kernel/liteos_a
├── apps                   # User-space init and shell application programs
├── arch                   # System architecture, such as ARM
│   └── arm                # Code for ARM architecture
├── bsd                    # Code of the driver and adaptation layer module related to the FreeBSD, such as the USB module
├── compat                 # Kernel API compatibility
│   └── posix              # POSIX APIs
├── drivers                # Kernel drivers
│   └── char               # Character device
│       ├── mem            # Driver for accessing physical input/output (I/O) devices
│       ├── quickstart     # APIs for quick start of the system
│       ├── random         # Driver for random number generators
│       └── video          # Framework of the framebuffer driver
├── fs                     # File system module, which mainly derives from the NuttX open-source project
│   ├── fat                # FAT file system
│   ├── jffs2              # JFFS2 file system
│   ├── include            # Header files exposed externally
│   ├── nfs                # NFS file system
│   ├── proc               # proc file system
│   ├── ramfs              # RAMFS file system
│   └── vfs                # VFS layer
├── kernel                 # Kernel modules including the process, memory, and IPC modules
│   ├── base               # Basic kernel modules including the scheduling and memory modules
│   ├── common             # Common components used by the kernel
│   ├── extended           # Extended kernel modules including the dynamic loading, vDSO, and LiteIPC modules
│   ├── include            # Header files exposed externally
│   └── user               # Init process loading
├── lib                    # Kernel library
├── net                    # Network module, which mainly derives from the lwIP open-source project
├── platform               # Code for supporting different systems on a chip (SOCs), such as Hi3516D V300
│   ├── hw                 # Logic code related to clocks and interrupts
│   ├── include            # Header files exposed externally
│   └── uart               # Logic code related to the serial port
├── platform               # Code for supporting different systems on a chip (SOCs), such as Hi3516D V300
├── security               # Code related to security features, including process permission management and virtual ID mapping management
├── syscall                # System calling
└── tools                  # Building tools as well as related configuration and code

Constraints

  • Programming languages: C and C++
  • Applicable development boards: Hi3518E V300 and Hi3516D V300
  • Hi3518E V300 uses the JFFS2 file system by default, and Hi3516D V300 uses the FAT file system by default.

Usage

OpenHarmony LiteOS Cortex-A supports the Hi3518E V300 and Hi3516D V300. You can develop and run your applications based on both development boards.

Preparations

You need to set up the compilation environment on Linux.

Source Code Acquisition

Download and decompress a set of source code on a Linux server to acquire the source code.

Compilation and Building

For details about how to develop the first application, see:

Repositories Involved

Kernel subsystem

drivers_liteos

kernel_liteos_a