Go to file
openharmony_ci 8592e04c78 !198 优化quickstart宏定义
Merge pull request !198 from boxi/master
2021-04-29 14:09:51 +08:00
.gitee add issue and pr template 2021-04-07 14:49:32 +08:00
apps remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
arch !185 多核情况下当系统持有调度锁异常时,无异常信息输出 2021-04-28 08:53:15 +08:00
bsd remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
compat/posix !157 删除无用的__cplusplus,移除不必要的文件x权限 2021-04-20 09:01:45 +08:00
drivers/char fix: Optimiz macro of quickstart cmd 2021-04-29 11:40:01 +08:00
figures update openharmony 1.0.1 2021-03-11 18:43:57 +08:00
fs !186 将VnodeInUseIter和VnodeFreeAll函数改为非递归 2021-04-29 10:04:50 +08:00
kernel !193 新增/dev/quickstart节点,作为用户态根进程与其他进程的启动同步通信节点 2021-04-28 19:46:42 +08:00
lib remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
net remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
platform remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
security remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
shell remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
syscall !157 删除无用的__cplusplus,移除不必要的文件x权限 2021-04-20 09:01:45 +08:00
testsuites add testsuites 2021-04-25 17:35:47 +08:00
tools feat: Add /dev/quickstart to support synchronous communication between processes in user mode startup. 2021-04-28 19:42:06 +08:00
.gitignore fix: Show conflicting files for git apply or patch -p command 2021-04-22 16:44:46 +08:00
BUILD.gn remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
Kconfig feat: Add /dev/quickstart to support synchronous communication between processes in user mode startup. 2021-04-28 19:42:06 +08:00
LICENSE update openharmony 1.0.1 2021-03-11 18:43:57 +08:00
Makefile use -include option instead of including menuconfig manually 2021-04-14 17:56:48 +08:00
README.md TicketNo:DTS2021012805GXU8P0H00 2021-03-16 16:54:09 +08:00
README_zh-HK.md add README_zh-HK.md. 2021-03-29 12:01:23 +08:00
README_zh.md TicketNo:DTS2021012805GXU8P0H00 2021-03-16 16:54:09 +08:00
build.sh [Desc]Modify the vendor configuration file path because the product_path 2021-03-23 22:23:19 +08:00
config.mk remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00
kernel_test.sources remove __cplusplus guards in .c files 2021-04-19 18:28:25 +08:00

README.md

LiteOS Cortex-A

Introduction

The OpenHarmony LiteOS Cortex-A is a new-generation kernel developed based on the Huawei LiteOS kernel. Huawei LiteOS is a lightweight operating system OS built for the Internet of Things IoT field. With the rapid development of the IoT industry, OpenHarmony LiteOS Cortex-A brings small-sized, low-power, and high-performance experience and builds a unified and open ecosystem for developers. In addition, it provides rich kernel mechanisms, more comprehensive Portable Operating System Interface POSIX, and a unified driver framework, Hardware Driver Foundation HDF, which offers unified access for device developers and friendly development experience for application developers. Figure 1 shows the architecture of the OpenHarmony LiteOS Cortex-A kernel.

Figure 1 Architecture of the OpenHarmony LiteOS Cortex-A kernel

Directory Structure

/kernel/liteos_a
├── apps                   # User-space init and shell application programs
├── arch                   # System architecture, such as ARM
│   └── arm                # Code for ARM architecture
├── bsd                    # Code of the driver and adaptation layer module related to the FreeBSD, such as the USB module
├── compat                 # Kernel API compatibility
│   └── posix              # POSIX APIs
├── drivers                # Kernel drivers
│   └── char               # Character device
│       ├── mem            # Driver for accessing physical input/output (I/O) devices
│       ├── quickstart     # APIs for quick start of the system
│       ├── random         # Driver for random number generators
│       └── video          # Framework of the framebuffer driver
├── fs                     # File system module, which mainly derives from the NuttX open-source project
│   ├── fat                # FAT file system
│   ├── jffs2              # JFFS2 file system
│   ├── include            # Header files exposed externally
│   ├── nfs                # NFS file system
│   ├── proc               # proc file system
│   ├── ramfs              # RAMFS file system
│   └── vfs                # VFS layer
├── kernel                 # Kernel modules including the process, memory, and IPC modules
│   ├── base               # Basic kernel modules including the scheduling and memory modules
│   ├── common             # Common components used by the kernel
│   ├── extended           # Extended kernel modules including the dynamic loading, vDSO, and LiteIPC modules
│   ├── include            # Header files exposed externally
│   └── user               # Init process loading
├── lib                    # Kernel library
├── net                    # Network module, which mainly derives from the lwIP open-source project
├── platform               # Code for supporting different systems on a chip (SOCs), such as Hi3516D V300
│   ├── hw                 # Logic code related to clocks and interrupts
│   ├── include            # Header files exposed externally
│   └── uart               # Logic code related to the serial port
├── platform               # Code for supporting different systems on a chip (SOCs), such as Hi3516D V300
├── security               # Code related to security features, including process permission management and virtual ID mapping management
├── syscall                # System calling
└── tools                  # Building tools as well as related configuration and code

Constraints

  • Programming languages: C and C++
  • Applicable development boards: Hi3518E V300 and Hi3516D V300
  • Hi3518E V300 uses the JFFS2 file system by default, and Hi3516D V300 uses the FAT file system by default.

Usage

OpenHarmony LiteOS Cortex-A supports the Hi3518E V300 and Hi3516D V300. You can develop and run your applications based on both development boards.

Preparations

You need to set up the compilation environment on Linux.

Source Code Acquisition

Download and decompress a set of source code on a Linux server to acquire the source code. For more acquisition methods, see Source Code Acquisition.

Compilation and Building

For details about how to develop the first application, see:

Repositories Involved

Kernel subsystem

drivers_liteos

kernel_liteos_a