django/docs/ref/contrib/postgres/fields.txt

840 lines
26 KiB
Plaintext
Raw Normal View History

Added array field support for PostgreSQL. The first part of django.contrib.postgres, including model and two form fields for arrays of other data types. This commit is formed of the following work: Add shell of postgres app and test handling. First draft of array fields. Use recursive deconstruction. Stop creating classes at lookup time. Add validation and size parameter. Add contained_by lookup. Add SimpleArrayField for forms. Add SplitArrayField (mainly for admin). Fix prepare_value for SimpleArrayField. Stop using MultiValueField and MultiWidget. They don't play nice with flexible sizes. Add basics of admin integration. Missing: - Tests - Fully working js Add reference document for django.contrib.postgres.fields.ArrayField. Various performance and style tweaks. Fix internal docs link, formalise code snippets. Remove the admin code for now. It needs a better way of handing JS widgets in the admin as a whole before it is easy to write. In particular there are serious issues involving DateTimePicker when used in an array. Add a test for nested array fields with different delimiters. This will be a documented pattern so having a test for it is useful. Add docs for SimpleArrayField. Add docs for SplitArrayField. Remove admin related code for now. definition -> description Fix typo. Py3 errors. Avoid using regexes where they're not needed. Allow passing tuples by the programmer. Add some more tests for multidimensional arrays. Also fix slicing as much as it can be fixed. Simplify SplitArrayWidget's data loading. If we aren't including the variable size one, we don't need to search like this.
2014-03-27 00:44:21 +08:00
PostgreSQL specific model fields
================================
All of these fields are available from the ``django.contrib.postgres.fields``
module.
.. currentmodule:: django.contrib.postgres.fields
ArrayField
----------
.. class:: ArrayField(base_field, size=None, **options)
A field for storing lists of data. Most field types can be used, you simply
pass another field instance as the :attr:`base_field
<ArrayField.base_field>`. You may also specify a :attr:`size
<ArrayField.size>`. ``ArrayField`` can be nested to store multi-dimensional
arrays.
.. attribute:: base_field
This is a required argument.
2014-05-28 07:46:48 +08:00
Specifies the underlying data type and behavior for the array. It
Added array field support for PostgreSQL. The first part of django.contrib.postgres, including model and two form fields for arrays of other data types. This commit is formed of the following work: Add shell of postgres app and test handling. First draft of array fields. Use recursive deconstruction. Stop creating classes at lookup time. Add validation and size parameter. Add contained_by lookup. Add SimpleArrayField for forms. Add SplitArrayField (mainly for admin). Fix prepare_value for SimpleArrayField. Stop using MultiValueField and MultiWidget. They don't play nice with flexible sizes. Add basics of admin integration. Missing: - Tests - Fully working js Add reference document for django.contrib.postgres.fields.ArrayField. Various performance and style tweaks. Fix internal docs link, formalise code snippets. Remove the admin code for now. It needs a better way of handing JS widgets in the admin as a whole before it is easy to write. In particular there are serious issues involving DateTimePicker when used in an array. Add a test for nested array fields with different delimiters. This will be a documented pattern so having a test for it is useful. Add docs for SimpleArrayField. Add docs for SplitArrayField. Remove admin related code for now. definition -> description Fix typo. Py3 errors. Avoid using regexes where they're not needed. Allow passing tuples by the programmer. Add some more tests for multidimensional arrays. Also fix slicing as much as it can be fixed. Simplify SplitArrayWidget's data loading. If we aren't including the variable size one, we don't need to search like this.
2014-03-27 00:44:21 +08:00
should be an instance of a subclass of
:class:`~django.db.models.Field`. For example, it could be an
:class:`~django.db.models.IntegerField` or a
:class:`~django.db.models.CharField`. Most field types are permitted,
with the exception of those handling relational data
(:class:`~django.db.models.ForeignKey`,
:class:`~django.db.models.OneToOneField` and
:class:`~django.db.models.ManyToManyField`).
It is possible to nest array fields - you can specify an instance of
``ArrayField`` as the ``base_field``. For example::
from django.db import models
from django.contrib.postgres.fields import ArrayField
class ChessBoard(models.Model):
board = ArrayField(
ArrayField(
2015-02-05 17:09:13 +08:00
models.CharField(max_length=10, blank=True),
size=8,
),
size=8,
)
Added array field support for PostgreSQL. The first part of django.contrib.postgres, including model and two form fields for arrays of other data types. This commit is formed of the following work: Add shell of postgres app and test handling. First draft of array fields. Use recursive deconstruction. Stop creating classes at lookup time. Add validation and size parameter. Add contained_by lookup. Add SimpleArrayField for forms. Add SplitArrayField (mainly for admin). Fix prepare_value for SimpleArrayField. Stop using MultiValueField and MultiWidget. They don't play nice with flexible sizes. Add basics of admin integration. Missing: - Tests - Fully working js Add reference document for django.contrib.postgres.fields.ArrayField. Various performance and style tweaks. Fix internal docs link, formalise code snippets. Remove the admin code for now. It needs a better way of handing JS widgets in the admin as a whole before it is easy to write. In particular there are serious issues involving DateTimePicker when used in an array. Add a test for nested array fields with different delimiters. This will be a documented pattern so having a test for it is useful. Add docs for SimpleArrayField. Add docs for SplitArrayField. Remove admin related code for now. definition -> description Fix typo. Py3 errors. Avoid using regexes where they're not needed. Allow passing tuples by the programmer. Add some more tests for multidimensional arrays. Also fix slicing as much as it can be fixed. Simplify SplitArrayWidget's data loading. If we aren't including the variable size one, we don't need to search like this.
2014-03-27 00:44:21 +08:00
Transformation of values between the database and the model, validation
of data and configuration, and serialization are all delegated to the
underlying base field.
.. attribute:: size
This is an optional argument.
If passed, the array will have a maximum size as specified. This will
be passed to the database, although PostgreSQL at present does not
enforce the restriction.
.. note::
When nesting ``ArrayField``, whether you use the `size` parameter or not,
PostgreSQL requires that the arrays are rectangular::
from django.contrib.postgres.fields import ArrayField
from django.db import models
Added array field support for PostgreSQL. The first part of django.contrib.postgres, including model and two form fields for arrays of other data types. This commit is formed of the following work: Add shell of postgres app and test handling. First draft of array fields. Use recursive deconstruction. Stop creating classes at lookup time. Add validation and size parameter. Add contained_by lookup. Add SimpleArrayField for forms. Add SplitArrayField (mainly for admin). Fix prepare_value for SimpleArrayField. Stop using MultiValueField and MultiWidget. They don't play nice with flexible sizes. Add basics of admin integration. Missing: - Tests - Fully working js Add reference document for django.contrib.postgres.fields.ArrayField. Various performance and style tweaks. Fix internal docs link, formalise code snippets. Remove the admin code for now. It needs a better way of handing JS widgets in the admin as a whole before it is easy to write. In particular there are serious issues involving DateTimePicker when used in an array. Add a test for nested array fields with different delimiters. This will be a documented pattern so having a test for it is useful. Add docs for SimpleArrayField. Add docs for SplitArrayField. Remove admin related code for now. definition -> description Fix typo. Py3 errors. Avoid using regexes where they're not needed. Allow passing tuples by the programmer. Add some more tests for multidimensional arrays. Also fix slicing as much as it can be fixed. Simplify SplitArrayWidget's data loading. If we aren't including the variable size one, we don't need to search like this.
2014-03-27 00:44:21 +08:00
class Board(models.Model):
pieces = ArrayField(ArrayField(models.IntegerField()))
# Valid
Board(pieces=[
[2, 3],
[2, 1],
])
# Not valid
Board(pieces=[
[2, 3],
[2],
])
If irregular shapes are required, then the underlying field should be made
nullable and the values padded with ``None``.
Querying ArrayField
^^^^^^^^^^^^^^^^^^^
There are a number of custom lookups and transforms for :class:`ArrayField`.
We will use the following example model::
from django.db import models
from django.contrib.postgres.fields import ArrayField
class Post(models.Model):
name = models.CharField(max_length=200)
tags = ArrayField(models.CharField(max_length=200), blank=True)
def __str__(self): # __unicode__ on Python 2
Added array field support for PostgreSQL. The first part of django.contrib.postgres, including model and two form fields for arrays of other data types. This commit is formed of the following work: Add shell of postgres app and test handling. First draft of array fields. Use recursive deconstruction. Stop creating classes at lookup time. Add validation and size parameter. Add contained_by lookup. Add SimpleArrayField for forms. Add SplitArrayField (mainly for admin). Fix prepare_value for SimpleArrayField. Stop using MultiValueField and MultiWidget. They don't play nice with flexible sizes. Add basics of admin integration. Missing: - Tests - Fully working js Add reference document for django.contrib.postgres.fields.ArrayField. Various performance and style tweaks. Fix internal docs link, formalise code snippets. Remove the admin code for now. It needs a better way of handing JS widgets in the admin as a whole before it is easy to write. In particular there are serious issues involving DateTimePicker when used in an array. Add a test for nested array fields with different delimiters. This will be a documented pattern so having a test for it is useful. Add docs for SimpleArrayField. Add docs for SplitArrayField. Remove admin related code for now. definition -> description Fix typo. Py3 errors. Avoid using regexes where they're not needed. Allow passing tuples by the programmer. Add some more tests for multidimensional arrays. Also fix slicing as much as it can be fixed. Simplify SplitArrayWidget's data loading. If we aren't including the variable size one, we don't need to search like this.
2014-03-27 00:44:21 +08:00
return self.name
.. fieldlookup:: arrayfield.contains
contains
~~~~~~~~
The :lookup:`contains` lookup is overridden on :class:`ArrayField`. The
returned objects will be those where the values passed are a subset of the
data. It uses the SQL operator ``@>``. For example::
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])
>>> Post.objects.filter(tags__contains=['thoughts'])
[<Post: First post>, <Post: Second post>]
>>> Post.objects.filter(tags__contains=['django'])
[<Post: First post>, <Post: Third post>]
>>> Post.objects.filter(tags__contains=['django', 'thoughts'])
[<Post: First post>]
.. fieldlookup:: arrayfield.contained_by
contained_by
~~~~~~~~~~~~
This is the inverse of the :lookup:`contains <arrayfield.contains>` lookup -
the objects returned will be those where the data is a subset of the values
passed. It uses the SQL operator ``<@``. For example::
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])
>>> Post.objects.filter(tags__contained_by=['thoughts', 'django'])
[<Post: First post>, <Post: Second post>]
Added array field support for PostgreSQL. The first part of django.contrib.postgres, including model and two form fields for arrays of other data types. This commit is formed of the following work: Add shell of postgres app and test handling. First draft of array fields. Use recursive deconstruction. Stop creating classes at lookup time. Add validation and size parameter. Add contained_by lookup. Add SimpleArrayField for forms. Add SplitArrayField (mainly for admin). Fix prepare_value for SimpleArrayField. Stop using MultiValueField and MultiWidget. They don't play nice with flexible sizes. Add basics of admin integration. Missing: - Tests - Fully working js Add reference document for django.contrib.postgres.fields.ArrayField. Various performance and style tweaks. Fix internal docs link, formalise code snippets. Remove the admin code for now. It needs a better way of handing JS widgets in the admin as a whole before it is easy to write. In particular there are serious issues involving DateTimePicker when used in an array. Add a test for nested array fields with different delimiters. This will be a documented pattern so having a test for it is useful. Add docs for SimpleArrayField. Add docs for SplitArrayField. Remove admin related code for now. definition -> description Fix typo. Py3 errors. Avoid using regexes where they're not needed. Allow passing tuples by the programmer. Add some more tests for multidimensional arrays. Also fix slicing as much as it can be fixed. Simplify SplitArrayWidget's data loading. If we aren't including the variable size one, we don't need to search like this.
2014-03-27 00:44:21 +08:00
>>> Post.objects.filter(tags__contained_by=['thoughts', 'django', 'tutorial'])
[<Post: First post>, <Post: Second post>, <Post: Third post>]
.. fieldlookup:: arrayfield.overlap
overlap
~~~~~~~
Returns objects where the data shares any results with the values passed. Uses
the SQL operator ``&&``. For example::
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['tutorial', 'django'])
>>> Post.objects.filter(tags__overlap=['thoughts'])
[<Post: First post>, <Post: Second post>]
>>> Post.objects.filter(tags__overlap=['thoughts', 'tutorial'])
[<Post: First post>, <Post: Second post>, <Post: Third post>]
.. fieldlookup:: arrayfield.len
len
~~~
Returns the length of the array. The lookups available afterwards are those
available for :class:`~django.db.models.IntegerField`. For example::
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.filter(tags__len=1)
[<Post: Second post>]
Added array field support for PostgreSQL. The first part of django.contrib.postgres, including model and two form fields for arrays of other data types. This commit is formed of the following work: Add shell of postgres app and test handling. First draft of array fields. Use recursive deconstruction. Stop creating classes at lookup time. Add validation and size parameter. Add contained_by lookup. Add SimpleArrayField for forms. Add SplitArrayField (mainly for admin). Fix prepare_value for SimpleArrayField. Stop using MultiValueField and MultiWidget. They don't play nice with flexible sizes. Add basics of admin integration. Missing: - Tests - Fully working js Add reference document for django.contrib.postgres.fields.ArrayField. Various performance and style tweaks. Fix internal docs link, formalise code snippets. Remove the admin code for now. It needs a better way of handing JS widgets in the admin as a whole before it is easy to write. In particular there are serious issues involving DateTimePicker when used in an array. Add a test for nested array fields with different delimiters. This will be a documented pattern so having a test for it is useful. Add docs for SimpleArrayField. Add docs for SplitArrayField. Remove admin related code for now. definition -> description Fix typo. Py3 errors. Avoid using regexes where they're not needed. Allow passing tuples by the programmer. Add some more tests for multidimensional arrays. Also fix slicing as much as it can be fixed. Simplify SplitArrayWidget's data loading. If we aren't including the variable size one, we don't need to search like this.
2014-03-27 00:44:21 +08:00
.. fieldlookup:: arrayfield.index
Index transforms
~~~~~~~~~~~~~~~~
This class of transforms allows you to index into the array in queries. Any
non-negative integer can be used. There are no errors if it exceeds the
:attr:`size <ArrayField.size>` of the array. The lookups available after the
transform are those from the :attr:`base_field <ArrayField.base_field>`. For
example::
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.filter(tags__0='thoughts')
[<Post: First post>, <Post: Second post>]
>>> Post.objects.filter(tags__1__iexact='Django')
[<Post: First post>]
>>> Post.objects.filter(tags__276='javascript')
[]
.. note::
PostgreSQL uses 1-based indexing for array fields when writing raw SQL.
However these indexes and those used in :lookup:`slices <arrayfield.slice>`
use 0-based indexing to be consistent with Python.
.. fieldlookup:: arrayfield.slice
Slice transforms
~~~~~~~~~~~~~~~~
This class of transforms allow you to take a slice of the array. Any two
non-negative integers can be used, separated by a single underscore. The
lookups available after the transform do not change. For example::
>>> Post.objects.create(name='First post', tags=['thoughts', 'django'])
>>> Post.objects.create(name='Second post', tags=['thoughts'])
>>> Post.objects.create(name='Third post', tags=['django', 'python', 'thoughts'])
>>> Post.objects.filter(tags__0_1=['thoughts'])
[<Post: First post>]
>>> Post.objects.filter(tags__0_2__contains='thoughts')
[<Post: First post>, <Post: Second post>]
.. note::
PostgreSQL uses 1-based indexing for array fields when writing raw SQL.
However these slices and those used in :lookup:`indexes <arrayfield.index>`
use 0-based indexing to be consistent with Python.
.. admonition:: Multidimensional arrays with indexes and slices
2014-05-28 07:46:48 +08:00
PostgreSQL has some rather esoteric behavior when using indexes and slices
Added array field support for PostgreSQL. The first part of django.contrib.postgres, including model and two form fields for arrays of other data types. This commit is formed of the following work: Add shell of postgres app and test handling. First draft of array fields. Use recursive deconstruction. Stop creating classes at lookup time. Add validation and size parameter. Add contained_by lookup. Add SimpleArrayField for forms. Add SplitArrayField (mainly for admin). Fix prepare_value for SimpleArrayField. Stop using MultiValueField and MultiWidget. They don't play nice with flexible sizes. Add basics of admin integration. Missing: - Tests - Fully working js Add reference document for django.contrib.postgres.fields.ArrayField. Various performance and style tweaks. Fix internal docs link, formalise code snippets. Remove the admin code for now. It needs a better way of handing JS widgets in the admin as a whole before it is easy to write. In particular there are serious issues involving DateTimePicker when used in an array. Add a test for nested array fields with different delimiters. This will be a documented pattern so having a test for it is useful. Add docs for SimpleArrayField. Add docs for SplitArrayField. Remove admin related code for now. definition -> description Fix typo. Py3 errors. Avoid using regexes where they're not needed. Allow passing tuples by the programmer. Add some more tests for multidimensional arrays. Also fix slicing as much as it can be fixed. Simplify SplitArrayWidget's data loading. If we aren't including the variable size one, we don't need to search like this.
2014-03-27 00:44:21 +08:00
on multidimensional arrays. It will always work to use indexes to reach
down to the final underlying data, but most other slices behave strangely
at the database level and cannot be supported in a logical, consistent
fashion by Django.
Indexing ArrayField
^^^^^^^^^^^^^^^^^^^
At present using :attr:`~django.db.models.Field.db_index` will create a
``btree`` index. This does not offer particularly significant help to querying.
A more useful index is a ``GIN`` index, which you should create using a
:class:`~django.db.migrations.operations.RunSQL` operation.
HStoreField
-----------
.. class:: HStoreField(**options)
A field for storing mappings of strings to strings. The Python data type
used is a ``dict``.
To use this field, you'll need to:
1. Add ``'django.contrib.postgres'`` in your :setting:`INSTALLED_APPS`.
2. Setup the hstore extension in PostgreSQL before the first ``CreateModel``
or ``AddField`` operation by adding a migration with the
:class:`~django.contrib.postgres.operations.HStoreExtension` operation.
For example::
from django.contrib.postgres.operations import HStoreExtension
class Migration(migrations.Migration):
...
operations = [
HStoreExtension(),
...
]
Creating the extension requires a database user with superuser
privileges. If the Django database user doesn't have superuser
privileges, you'll have to create the extension outside of Django
migrations with a user that has the appropriate privileges. In that
case, connect to your Django database and run the query
``CREATE EXTENSION IF NOT EXISTS hstore;``
You'll see an error like ``can't adapt type 'dict'`` if you skip the first
step, or ``type "hstore" does not exist`` if you skip the second.
.. note::
On occasions it may be useful to require or restrict the keys which are
valid for a given field. This can be done using the
:class:`~django.contrib.postgres.validators.KeysValidator`.
Querying HStoreField
^^^^^^^^^^^^^^^^^^^^
In addition to the ability to query by key, there are a number of custom
lookups available for ``HStoreField``.
We will use the following example model::
from django.contrib.postgres.fields import HStoreField
from django.db import models
class Dog(models.Model):
name = models.CharField(max_length=200)
data = HStoreField()
def __str__(self): # __unicode__ on Python 2
return self.name
.. fieldlookup:: hstorefield.key
Key lookups
~~~~~~~~~~~
To query based on a given key, you simply use that key as the lookup name::
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie'})
>>> Dog.objects.filter(data__breed='collie')
[<Dog: Meg>]
You can chain other lookups after key lookups::
>>> Dog.objects.filter(data__breed__contains='l')
2014-11-05 05:08:32 +08:00
[<Dog: Rufus>, <Dog: Meg>]
If the key you wish to query by clashes with the name of another lookup, you
need to use the :lookup:`hstorefield.contains` lookup instead.
.. warning::
Since any string could be a key in a hstore value, any lookup other than
those listed below will be interpreted as a key lookup. No errors are
raised. Be extra careful for typing mistakes, and always check your queries
work as you intend.
.. fieldlookup:: hstorefield.contains
contains
~~~~~~~~
The :lookup:`contains` lookup is overridden on
:class:`~django.contrib.postgres.fields.HStoreField`. The returned objects are
those where the given ``dict`` of key-value pairs are all contained in the
field. It uses the SQL operator ``@>``. For example::
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador', 'owner': 'Bob'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.create(name='Fred', data={})
>>> Dog.objects.filter(data__contains={'owner': 'Bob'})
[<Dog: Rufus>, <Dog: Meg>]
>>> Dog.objects.filter(data__contains={'breed': 'collie'})
[<Dog: Meg>]
.. fieldlookup:: hstorefield.contained_by
contained_by
~~~~~~~~~~~~
This is the inverse of the :lookup:`contains <hstorefield.contains>` lookup -
the objects returned will be those where the key-value pairs on the object are
a subset of those in the value passed. It uses the SQL operator ``<@``. For
example::
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador', 'owner': 'Bob'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.create(name='Fred', data={})
>>> Dog.objects.filter(data__contained_by={'breed': 'collie', 'owner': 'Bob'})
[<Dog: Meg>, <Dog: Fred>]
>>> Dog.objects.filter(data__contained_by={'breed': 'collie'})
[<Dog: Fred>]
.. fieldlookup:: hstorefield.has_key
has_key
~~~~~~~
Returns objects where the given key is in the data. Uses the SQL operator
``?``. For example::
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.filter(data__has_key='owner')
[<Dog: Meg>]
2015-05-31 04:22:36 +08:00
.. fieldlookup:: hstorefield.has_any_keys
has_any_keys
~~~~~~~~~~~~
.. versionadded:: 1.9
Returns objects where any of the given keys are in the data. Uses the SQL
operator ``?|``. For example::
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'owner': 'Bob'})
>>> Dog.objects.create(name='Fred', data={})
>>> Dog.objects.filter(data__has_any_keys=['owner', 'breed'])
[<Dog: Rufus>, <Dog: Meg>]
.. fieldlookup:: hstorefield.has_keys
has_keys
~~~~~~~~
Returns objects where all of the given keys are in the data. Uses the SQL operator
``?&``. For example::
>>> Dog.objects.create(name='Rufus', data={})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.filter(data__has_keys=['breed', 'owner'])
[<Dog: Meg>]
.. fieldlookup:: hstorefield.keys
keys
~~~~
Returns objects where the array of keys is the given value. Note that the order
is not guaranteed to be reliable, so this transform is mainly useful for using
in conjunction with lookups on
:class:`~django.contrib.postgres.fields.ArrayField`. Uses the SQL function
``akeys()``. For example::
>>> Dog.objects.create(name='Rufus', data={'toy': 'bone'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.filter(data__keys__overlap=['breed', 'toy'])
[<Dog: Rufus>, <Dog: Meg>]
.. fieldlookup:: hstorefield.values
values
~~~~~~
Returns objects where the array of values is the given value. Note that the
order is not guaranteed to be reliable, so this transform is mainly useful for
using in conjunction with lookups on
:class:`~django.contrib.postgres.fields.ArrayField`. Uses the SQL function
``avalues()``. For example::
>>> Dog.objects.create(name='Rufus', data={'breed': 'labrador'})
>>> Dog.objects.create(name='Meg', data={'breed': 'collie', 'owner': 'Bob'})
>>> Dog.objects.filter(data__values__contains=['collie'])
[<Dog: Meg>]
JSONField
---------
.. versionadded:: 1.9
.. class:: JSONField(**options)
A field for storing JSON encoded data. In Python the data is represented in
its Python native format: dictionaries, lists, strings, numbers, booleans
and ``None``.
.. note::
PostgreSQL has two native JSON based data types: ``json`` and ``jsonb``.
The main difference between them is how they are stored and how they can be
queried. PostgreSQL's ``json`` field is stored as the original string
representation of the JSON and must be decoded on the fly when queried
based on keys. The ``jsonb`` field is stored based on the actual structure
of the JSON which allows indexing. The trade-off is a small additional cost
on writing to the ``jsonb`` field. ``JSONField`` uses ``jsonb``.
**As a result, the usage of this field is only supported on PostgreSQL
versions at least 9.4**.
Querying JSONField
^^^^^^^^^^^^^^^^^^
We will use the following example model::
from django.contrib.postgres.fields import JSONField
from django.db import models
class Dog(models.Model):
name = models.CharField(max_length=200)
data = JSONField()
def __str__(self): # __unicode__ on Python 2
return self.name
.. fieldlookup:: jsonfield.key
Key, index, and path lookups
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To query based on a given dictionary key, simply use that key as the lookup
name::
>>> Dog.objects.create(name='Rufus', data={
... 'breed': 'labrador',
... 'owner': {
... 'name': 'Bob',
... 'other_pets': [{
... 'name': 'Fishy',
... }],
... },
... })
>>> Dog.objects.create(name='Meg', data={'breed': 'collie'})
>>> Dog.objects.filter(data__breed='collie')
[<Dog: Meg>]
Multiple keys can be chained together to form a path lookup::
>>> Dog.objects.filter(data__owner__name='Bob')
[<Dog: Rufus>]
If the key is an integer, it will be interpreted as an index lookup in an
array::
>>> Dog.objects.filter(data__owner__other_pets__0__name='Fishy')
[<Dog: Rufus>]
If the key you wish to query by clashes with the name of another lookup, use
the :lookup:`jsonfield.contains` lookup instead.
If only one key or index is used, the SQL operator ``->`` is used. If multiple
operators are used then the ``#>`` operator is used.
.. warning::
Since any string could be a key in a JSON object, any lookup other than
those listed below will be interpreted as a key lookup. No errors are
raised. Be extra careful for typing mistakes, and always check your queries
work as you intend.
Containment and key operations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. fieldlookup:: jsonfield.contains
.. fieldlookup:: jsonfield.contained_by
.. fieldlookup:: jsonfield.has_key
.. fieldlookup:: jsonfield.has_any_keys
.. fieldlookup:: jsonfield.has_keys
:class:`~django.contrib.postgres.fields.JSONField` shares lookups relating to
containment and keys with :class:`~django.contrib.postgres.fields.HStoreField`.
- :lookup:`contains <hstorefield.contains>` (accepts any JSON rather than
just a dictionary of strings)
- :lookup:`contained_by <hstorefield.contained_by>` (accepts any JSON
rather than just a dictionary of strings)
- :lookup:`has_key <hstorefield.has_key>`
- :lookup:`has_any_keys <hstorefield.has_any_keys>`
- :lookup:`has_keys <hstorefield.has_keys>`
.. _range-fields:
Range Fields
------------
There are five range field types, corresponding to the built-in range types in
PostgreSQL. These fields are used to store a range of values; for example the
start and end timestamps of an event, or the range of ages an activity is
suitable for.
All of the range fields translate to :ref:`psycopg2 Range objects
<psycopg2:adapt-range>` in python, but also accept tuples as input if no bounds
information is necessary. The default is lower bound included, upper bound
excluded.
IntegerRangeField
^^^^^^^^^^^^^^^^^
.. class:: IntegerRangeField(**options)
Stores a range of integers. Based on an
:class:`~django.db.models.IntegerField`. Represented by an ``int4range`` in
the database and a :class:`~psycopg2:psycopg2.extras.NumericRange` in
Python.
BigIntegerRangeField
^^^^^^^^^^^^^^^^^^^^
.. class:: BigIntegerRangeField(**options)
Stores a range of large integers. Based on a
:class:`~django.db.models.BigIntegerField`. Represented by an ``int8range``
in the database and a :class:`~psycopg2:psycopg2.extras.NumericRange` in
Python.
FloatRangeField
^^^^^^^^^^^^^^^
.. class:: FloatRangeField(**options)
Stores a range of floating point values. Based on a
:class:`~django.db.models.FloatField`. Represented by a ``numrange`` in the
database and a :class:`~psycopg2:psycopg2.extras.NumericRange` in Python.
DateTimeRangeField
^^^^^^^^^^^^^^^^^^
.. class:: DateTimeRangeField(**options)
Stores a range of timestamps. Based on a
:class:`~django.db.models.DateTimeField`. Represented by a ``tztsrange`` in
the database and a :class:`~psycopg2:psycopg2.extras.DateTimeTZRange` in
Python.
DateRangeField
^^^^^^^^^^^^^^
.. class:: DateRangeField(**options)
Stores a range of dates. Based on a
:class:`~django.db.models.DateField`. Represented by a ``daterange`` in the
database and a :class:`~psycopg2:psycopg2.extras.DateRange` in Python.
Querying Range Fields
^^^^^^^^^^^^^^^^^^^^^
There are a number of custom lookups and transforms for range fields. They are
available on all the above fields, but we will use the following example
model::
from django.contrib.postgres.fields import IntegerRangeField
from django.db import models
class Event(models.Model):
name = models.CharField(max_length=200)
ages = IntegerRangeField()
start = models.DateTimeField()
def __str__(self): # __unicode__ on Python 2
return self.name
We will also use the following example objects::
>>> import datetime
>>> from django.utils import timezone
>>> now = timezone.now()
>>> Event.objects.create(name='Soft play', ages=(0, 10), start=now)
>>> Event.objects.create(name='Pub trip', ages=(21, None), start=now - datetime.timedelta(days=1))
and ``NumericRange``:
>>> from psycopg2.extras import NumericRange
Containment functions
~~~~~~~~~~~~~~~~~~~~~
As with other PostgreSQL fields, there are three standard containment
operators: ``contains``, ``contained_by`` and ``overlap``, using the SQL
operators ``@>``, ``<@``, and ``&&`` respectively.
.. fieldlookup:: rangefield.contains
contains
''''''''
>>> Event.objects.filter(ages__contains=NumericRange(4, 5))
[<Event: Soft play>]
.. fieldlookup:: rangefield.contained_by
contained_by
''''''''''''
>>> Event.objects.filter(ages__contained_by=NumericRange(0, 15))
[<Event: Soft play>]
.. versionadded 1.9
The `contained_by` lookup is also available on the non-range field types:
:class:`~django.db.models.fields.IntegerField`,
:class:`~django.db.models.fields.BigIntegerField`,
:class:`~django.db.models.fields.FloatField`,
:class:`~django.db.models.fields.DateField`, and
:class:`~django.db.models.fields.DateTimeField`. For example::
>>> from psycopg2.extras import DateTimeTZRange
>>> Event.objects.filter(start__contained_by=DateTimeTZRange(
... timezone.now() - datetime.timedelta(hours=1),
... timezone.now() + datetime.timedelta(hours=1),
... )
[<Event: Soft play>]
.. fieldlookup:: rangefield.overlap
overlap
'''''''
>>> Event.objects.filter(ages__overlap=NumericRange(8, 12))
[<Event: Soft play>]
Comparison functions
~~~~~~~~~~~~~~~~~~~~
Range fields support the standard lookups: :lookup:`lt`, :lookup:`gt`,
:lookup:`lte` and :lookup:`gte`. These are not particularly helpful - they
compare the lower bounds first and then the upper bounds only if necessary.
This is also the strategy used to order by a range field. It is better to use
the specific range comparison operators.
.. fieldlookup:: rangefield.fully_lt
fully_lt
''''''''
The returned ranges are strictly less than the passed range. In other words,
all the points in the returned range are less than all those in the passed
range.
>>> Event.objects.filter(ages__fully_lt=NumericRange(11, 15))
[<Event: Soft play>]
.. fieldlookup:: rangefield.fully_gt
fully_gt
''''''''
The returned ranges are strictly greater than the passed range. In other words,
the all the points in the returned range are greater than all those in the
passed range.
>>> Event.objects.filter(ages__fully_gt=NumericRange(11, 15))
[<Event: Pub trip>]
.. fieldlookup:: rangefield.not_lt
not_lt
''''''
The returned ranges do not contain any points less than the passed range, that
is the lower bound of the returned range is at least the lower bound of the
passed range.
>>> Event.objects.filter(ages__not_lt=NumericRange(0, 15))
[<Event: Soft play>, <Event: Pub trip>]
.. fieldlookup:: rangefield.not_gt
not_gt
''''''
The returned ranges do not contain any points greater than the passed range, that
is the upper bound of the returned range is at most the upper bound of the
passed range.
>>> Event.objects.filter(ages__not_gt=NumericRange(3, 10))
[<Event: Soft play>]
.. fieldlookup:: rangefield.adjacent_to
adjacent_to
'''''''''''
The returned ranges share a bound with the passed range.
>>> Event.objects.filter(ages__adjacent_to=NumericRange(10, 21))
[<Event: Soft play>, <Event: Pub trip>]
Querying using the bounds
~~~~~~~~~~~~~~~~~~~~~~~~~
There are three transforms available for use in queries. You can extract the
lower or upper bound, or query based on emptiness.
.. fieldlookup:: rangefield.startswith
startswith
''''''''''
Returned objects have the given lower bound. Can be chained to valid lookups
for the base field.
>>> Event.objects.filter(ages__startswith=21)
[<Event: Pub trip>]
.. fieldlookup:: rangefield.endswith
endswith
''''''''
Returned objects have the given upper bound. Can be chained to valid lookups
for the base field.
>>> Event.objects.filter(ages__endswith=10)
[<Event: Soft play>]
.. fieldlookup:: rangefield.isempty
isempty
'''''''
Returned objects are empty ranges. Can be chained to valid lookups for a
:class:`~django.db.models.BooleanField`.
>>> Event.objects.filter(ages__isempty=True)
[]
Defining your own range types
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PostgreSQL allows the definition of custom range types. Django's model and form
field implementations use base classes below, and psycopg2 provides a
:func:`~psycopg2:psycopg2.extras.register_range` to allow use of custom range
types.
.. class:: RangeField(**options)
Base class for model range fields.
.. attribute:: base_field
The model field to use.
.. attribute:: range_type
The psycopg2 range type to use.
.. attribute:: form_field
2015-01-12 02:24:13 +08:00
The form field class to use. Should be a subclass of
:class:`django.contrib.postgres.forms.BaseRangeField`.
.. class:: django.contrib.postgres.forms.BaseRangeField
Base class for form range fields.
.. attribute:: base_field
The form field to use.
.. attribute:: range_type
The psycopg2 range type to use.