Refs #24840 -- Added GDALRaster Warp and transform methods
Thanks to Tim Graham for the review.
This commit is contained in:
parent
c0fff64486
commit
c078021555
|
@ -69,3 +69,6 @@ get_band_maximum = double_output(std_call('GDALGetRasterMaximum'), [c_void_p, PO
|
|||
reproject_image = void_output(std_call('GDALReprojectImage'),
|
||||
[c_void_p, c_char_p, c_void_p, c_char_p, c_int, c_double, c_double, c_void_p, c_void_p, c_void_p]
|
||||
)
|
||||
auto_create_warped_vrt = voidptr_output(std_call('GDALAutoCreateWarpedVRT'),
|
||||
[c_void_p, c_char_p, c_char_p, c_int, c_double, c_void_p]
|
||||
)
|
||||
|
|
|
@ -32,3 +32,14 @@ GDAL_TO_CTYPES = [
|
|||
None, c_byte, c_uint16, c_int16, c_uint32, c_int32,
|
||||
c_float, c_double, None, None, None, None
|
||||
]
|
||||
|
||||
# List of resampling algorithms that can be used to warp a GDALRaster.
|
||||
GDAL_RESAMPLE_ALGORITHMS = {
|
||||
'NearestNeighbour': 0,
|
||||
'Bilinear': 1,
|
||||
'Cubic': 2,
|
||||
'CubicSpline': 3,
|
||||
'Lanczos': 4,
|
||||
'Average': 5,
|
||||
'Mode': 6,
|
||||
}
|
||||
|
|
|
@ -1,12 +1,13 @@
|
|||
import json
|
||||
import os
|
||||
from ctypes import addressof, byref, c_double
|
||||
from ctypes import addressof, byref, c_double, c_void_p
|
||||
|
||||
from django.contrib.gis.gdal.base import GDALBase
|
||||
from django.contrib.gis.gdal.driver import Driver
|
||||
from django.contrib.gis.gdal.error import GDALException
|
||||
from django.contrib.gis.gdal.prototypes import raster as capi
|
||||
from django.contrib.gis.gdal.raster.band import GDALBand
|
||||
from django.contrib.gis.gdal.raster.const import GDAL_RESAMPLE_ALGORITHMS
|
||||
from django.contrib.gis.gdal.srs import SpatialReference, SRSException
|
||||
from django.contrib.gis.geometry.regex import json_regex
|
||||
from django.utils import six
|
||||
|
@ -123,6 +124,9 @@ class GDALRaster(GDALBase):
|
|||
|
||||
if 'skew' in ds_input:
|
||||
self.skew.x, self.skew.y = ds_input['skew']
|
||||
elif isinstance(ds_input, c_void_p):
|
||||
# Instantiate the object using an existing pointer to a gdal raster.
|
||||
self._ptr = ds_input
|
||||
else:
|
||||
raise GDALException('Invalid data source input type: "{}".'.format(type(ds_input)))
|
||||
|
||||
|
@ -278,3 +282,113 @@ class GDALRaster(GDALBase):
|
|||
for idx in range(1, capi.get_ds_raster_count(self._ptr) + 1):
|
||||
bands.append(GDALBand(self, idx))
|
||||
return bands
|
||||
|
||||
def warp(self, ds_input, resampling='NearestNeighbour', max_error=0.0):
|
||||
"""
|
||||
Returns a warped GDALRaster with the given input characteristics.
|
||||
|
||||
The input is expected to be a dictionary containing the parameters
|
||||
of the target raster. Allowed values are width, height, SRID, origin,
|
||||
scale, skew, datatype, driver, and name (filename).
|
||||
|
||||
By default, the warp functions keeps all parameters equal to the values
|
||||
of the original source raster. For the name of the target raster, the
|
||||
name of the source raster will be used and appended with
|
||||
_copy. + source_driver_name.
|
||||
|
||||
In addition, the resampling algorithm can be specified with the "resampling"
|
||||
input parameter. The default is NearestNeighbor. For a list of all options
|
||||
consult the GDAL_RESAMPLE_ALGORITHMS constant.
|
||||
"""
|
||||
# Get the parameters defining the geotransform, srid, and size of the raster
|
||||
if 'width' not in ds_input:
|
||||
ds_input['width'] = self.width
|
||||
|
||||
if 'height' not in ds_input:
|
||||
ds_input['height'] = self.height
|
||||
|
||||
if 'srid' not in ds_input:
|
||||
ds_input['srid'] = self.srs.srid
|
||||
|
||||
if 'origin' not in ds_input:
|
||||
ds_input['origin'] = self.origin
|
||||
|
||||
if 'scale' not in ds_input:
|
||||
ds_input['scale'] = self.scale
|
||||
|
||||
if 'skew' not in ds_input:
|
||||
ds_input['skew'] = self.skew
|
||||
|
||||
# Get the driver, name, and datatype of the target raster
|
||||
if 'driver' not in ds_input:
|
||||
ds_input['driver'] = self.driver.name
|
||||
|
||||
if 'name' not in ds_input:
|
||||
ds_input['name'] = self.name + '_copy.' + self.driver.name
|
||||
|
||||
if 'datatype' not in ds_input:
|
||||
ds_input['datatype'] = self.bands[0].datatype()
|
||||
|
||||
# Set the number of bands
|
||||
ds_input['nr_of_bands'] = len(self.bands)
|
||||
|
||||
# Create target raster
|
||||
target = GDALRaster(ds_input, write=True)
|
||||
|
||||
# Copy nodata values to warped raster
|
||||
for index, band in enumerate(self.bands):
|
||||
target.bands[index].nodata_value = band.nodata_value
|
||||
|
||||
# Select resampling algorithm
|
||||
algorithm = GDAL_RESAMPLE_ALGORITHMS[resampling]
|
||||
|
||||
# Reproject image
|
||||
capi.reproject_image(
|
||||
self._ptr, self.srs.wkt.encode(),
|
||||
target._ptr, target.srs.wkt.encode(),
|
||||
algorithm, 0.0, max_error,
|
||||
c_void_p(), c_void_p(), c_void_p()
|
||||
)
|
||||
|
||||
# Make sure all data is written to file
|
||||
target._flush()
|
||||
|
||||
return target
|
||||
|
||||
def transform(self, srid, driver=None, name=None, resampling='NearestNeighbour',
|
||||
max_error=0.0):
|
||||
"""
|
||||
Returns a copy of this raster reprojected into the given SRID.
|
||||
"""
|
||||
# Convert the resampling algorithm name into an algorithm id
|
||||
algorithm = GDAL_RESAMPLE_ALGORITHMS[resampling]
|
||||
|
||||
# Instantiate target spatial reference system
|
||||
target_srs = SpatialReference(srid)
|
||||
|
||||
# Create warped virtual dataset in the target reference system
|
||||
target = capi.auto_create_warped_vrt(
|
||||
self._ptr, self.srs.wkt.encode(), target_srs.wkt.encode(),
|
||||
algorithm, max_error, c_void_p()
|
||||
)
|
||||
target = GDALRaster(target)
|
||||
|
||||
# Construct the target warp dictionary from the virtual raster
|
||||
data = {
|
||||
'srid': srid,
|
||||
'width': target.width,
|
||||
'height': target.height,
|
||||
'origin': [target.origin.x, target.origin.y],
|
||||
'scale': [target.scale.x, target.scale.y],
|
||||
'skew': [target.skew.x, target.skew.y],
|
||||
}
|
||||
|
||||
# Set the driver and filepath if provided
|
||||
if driver:
|
||||
data['driver'] = driver
|
||||
|
||||
if name:
|
||||
data['name'] = name
|
||||
|
||||
# Warp the raster into new srid
|
||||
return self.warp(data, resampling=resampling, max_error=max_error)
|
||||
|
|
|
@ -1119,7 +1119,7 @@ blue.
|
|||
values defining the properties of a new raster (such as size and name). If the
|
||||
input is a file path, the second parameter specifies if the raster should
|
||||
be opened with write access. If the input is raw data, the parameters ``width``,
|
||||
``heigth``, and ``srid`` are required. The following example shows how rasters
|
||||
``height``, and ``srid`` are required. The following example shows how rasters
|
||||
can be created from different input sources (using the sample data from the
|
||||
GeoDjango tests, see also the :ref:`gdal_sample_data` section)::
|
||||
|
||||
|
@ -1288,6 +1288,89 @@ blue.
|
|||
>>> rst.bands[1].data()
|
||||
array([[ 2., 3.]], dtype=float32)
|
||||
|
||||
.. method:: warp(ds_input, resampling='NearestNeighbour', max_error=0.0)
|
||||
|
||||
.. versionadded:: 1.9
|
||||
|
||||
Returns a warped version of this raster.
|
||||
|
||||
The warping parameters can be specified through the ``ds_input``
|
||||
argument. The use of ``ds_input`` is analogous to the corresponding
|
||||
argument of the class constructor. It is a dictionary with the
|
||||
characteristics of the target raster. Allowed dictionary key values are
|
||||
width, height, SRID, origin, scale, skew, datatype, driver, and name
|
||||
(filename).
|
||||
|
||||
By default, the warp functions keeps most parameters equal to the
|
||||
values of the original source raster, so only parameters that should be
|
||||
changed need to be specified. Note that this includes the driver, so
|
||||
for file-based rasters the warp function will create a new raster on
|
||||
disk.
|
||||
|
||||
The only parameter that is set differently from the source raster is the
|
||||
name. The default value of the the raster name is the name of the source
|
||||
raster appended with ``'_copy' + source_driver_name``. For file-based
|
||||
rasters it is recommended to provide the file path of the target raster.
|
||||
|
||||
The resampling algorithm used for warping can be specified with the
|
||||
``resampling`` argument. The default is ``NearestNeighbor``, and the
|
||||
other allowed values are ``Bilinear``, ``Cubic``, ``CubicSpline``,
|
||||
``Lanczos``, ``Average``, and ``Mode``.
|
||||
|
||||
The ``max_error`` argument can be used to specify the maximum error
|
||||
measured in input pixels that is allowed in approximating the
|
||||
transformation. The default is 0.0 for exact calculations.
|
||||
|
||||
For users familiar with ``GDAL``, this function has a similar
|
||||
functionality to the ``gdalwarp`` command-line utility.
|
||||
|
||||
For example, the warp function can be used for aggregating a raster to
|
||||
the double of its original pixel scale:
|
||||
|
||||
>>> rst = GDALRaster({
|
||||
... "width": 6, "height": 6, "srid": 3086,
|
||||
... "origin": [500000, 400000],
|
||||
... "scale": [100, -100],
|
||||
... "bands": [{"data": range(36), "nodata_value": 99}]
|
||||
... })
|
||||
>>> target = rst.warp({"scale": [200, -200], "width": 3, "height": 3})
|
||||
>>> target.bands[0].data()
|
||||
array([[ 7., 9., 11.],
|
||||
[ 19., 21., 23.],
|
||||
[ 31., 33., 35.]], dtype=float32)
|
||||
|
||||
.. method:: transform(srid, driver=None, name=None, resampling='NearestNeighbour', max_error=0.0)
|
||||
|
||||
.. versionadded:: 1.9
|
||||
|
||||
Returns a transformed version of this raster with the specified SRID.
|
||||
|
||||
This function transforms the current raster into a new spatial reference
|
||||
system that can be specified with an ``srid``. It calculates the bounds
|
||||
and scale of the current raster in the new spatial reference system and
|
||||
warps the raster using the :attr:`~GDALRaster.warp` function.
|
||||
|
||||
By default, the driver of the source raster is used and the name of the
|
||||
raster is the original name appended with
|
||||
``'_copy' + source_driver_name``. A different driver or name can be
|
||||
specified with the ``driver`` and ``name`` arguments.
|
||||
|
||||
The default resampling algorithm is ``NearestNeighbour`` but can be
|
||||
changed using the ``resampling`` argument. The default maximum allowed
|
||||
error for resampling is 0.0 and can be changed using the ``max_error``
|
||||
argument. Consult the :attr:`~GDALRaster.warp` documentation for detail
|
||||
on those arguments.
|
||||
|
||||
>>> rst = GDALRaster({
|
||||
... "width": 6, "height": 6, "srid": 3086,
|
||||
... "origin": [500000, 400000],
|
||||
... "scale": [100, -100],
|
||||
... "bands": [{"data": range(36), "nodata_value": 99}]
|
||||
... })
|
||||
>>> target = rst.transform(4326)
|
||||
>>> target.origin
|
||||
[-82.98492744885776, 27.601924753080144]
|
||||
|
||||
``GDALBand``
|
||||
------------
|
||||
|
||||
|
@ -1385,7 +1468,6 @@ blue.
|
|||
[ 8, -77, -66, 11],
|
||||
[ 12, 13, 14, 15]], dtype=int8)
|
||||
|
||||
|
||||
Settings
|
||||
========
|
||||
|
||||
|
|
|
@ -177,6 +177,15 @@ Minor features
|
|||
It supports automatic spatial index creation and reprojection when saving a
|
||||
model. It does not yet support spatial querying.
|
||||
|
||||
* The new :meth:`GDALRaster.warp() <django.contrib.gis.gdal.GDALRaster.warp>`
|
||||
method allows warping a raster by specifying target raster properties such as
|
||||
origin, width, height, or pixel size (amongst others).
|
||||
|
||||
* The new :meth:`GDALRaster.transform()
|
||||
<django.contrib.gis.gdal.GDALRaster.transform>` method allows transforming a
|
||||
raster into a different spatial reference system by specifying a target
|
||||
``srid``.
|
||||
|
||||
:mod:`django.contrib.messages`
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
|
|
|
@ -660,6 +660,7 @@ repo
|
|||
reportable
|
||||
reprojection
|
||||
reraise
|
||||
resampling
|
||||
reST
|
||||
reStructuredText
|
||||
reupload
|
||||
|
|
|
@ -139,8 +139,8 @@ class GDALRasterTests(unittest.TestCase):
|
|||
'skew': (self.rs.skew.x, self.rs.skew.y),
|
||||
'bands': [{
|
||||
'data': self.rs.bands[0].data(),
|
||||
'nodata_value': self.rs.bands[0].nodata_value
|
||||
}]
|
||||
'nodata_value': self.rs.bands[0].nodata_value,
|
||||
}],
|
||||
})
|
||||
|
||||
# Reload newly created raster from file
|
||||
|
@ -155,6 +155,118 @@ class GDALRasterTests(unittest.TestCase):
|
|||
else:
|
||||
self.assertEqual(restored_raster.bands[0].data(), self.rs.bands[0].data())
|
||||
|
||||
def test_raster_warp(self):
|
||||
# Create in memory raster
|
||||
source = GDALRaster({
|
||||
'datatype': 1,
|
||||
'driver': 'MEM',
|
||||
'name': 'sourceraster',
|
||||
'width': 4,
|
||||
'height': 4,
|
||||
'nr_of_bands': 1,
|
||||
'srid': 3086,
|
||||
'origin': (500000, 400000),
|
||||
'scale': (100, -100),
|
||||
'skew': (0, 0),
|
||||
'bands': [{
|
||||
'data': range(16),
|
||||
'nodata_value': 255,
|
||||
}],
|
||||
})
|
||||
|
||||
# Test altering the scale, width, and height of a raster
|
||||
data = {
|
||||
'scale': [200, -200],
|
||||
'width': 2,
|
||||
'height': 2,
|
||||
}
|
||||
target = source.warp(data)
|
||||
self.assertEqual(target.width, data['width'])
|
||||
self.assertEqual(target.height, data['height'])
|
||||
self.assertEqual(target.scale, data['scale'])
|
||||
self.assertEqual(target.bands[0].datatype(), source.bands[0].datatype())
|
||||
self.assertEqual(target.name, 'sourceraster_copy.MEM')
|
||||
result = target.bands[0].data()
|
||||
if numpy:
|
||||
result = result.flatten().tolist()
|
||||
self.assertEqual(result, [5, 7, 13, 15])
|
||||
|
||||
# Test altering the name and datatype (to float)
|
||||
data = {
|
||||
'name': '/path/to/targetraster.tif',
|
||||
'datatype': 6,
|
||||
}
|
||||
target = source.warp(data)
|
||||
self.assertEqual(target.bands[0].datatype(), 6)
|
||||
self.assertEqual(target.name, '/path/to/targetraster.tif')
|
||||
self.assertEqual(target.driver.name, 'MEM')
|
||||
result = target.bands[0].data()
|
||||
if numpy:
|
||||
result = result.flatten().tolist()
|
||||
self.assertEqual(
|
||||
result,
|
||||
[0.0, 1.0, 2.0, 3.0,
|
||||
4.0, 5.0, 6.0, 7.0,
|
||||
8.0, 9.0, 10.0, 11.0,
|
||||
12.0, 13.0, 14.0, 15.0]
|
||||
)
|
||||
|
||||
def test_raster_transform(self):
|
||||
# Prepare tempfile and nodata value
|
||||
rstfile = tempfile.NamedTemporaryFile(suffix='.tif')
|
||||
ndv = 99
|
||||
|
||||
# Create in file based raster
|
||||
source = GDALRaster({
|
||||
'datatype': 1,
|
||||
'driver': 'tif',
|
||||
'name': rstfile.name,
|
||||
'width': 5,
|
||||
'height': 5,
|
||||
'nr_of_bands': 1,
|
||||
'srid': 4326,
|
||||
'origin': (-5, 5),
|
||||
'scale': (2, -2),
|
||||
'skew': (0, 0),
|
||||
'bands': [{
|
||||
'data': range(25),
|
||||
'nodata_value': ndv,
|
||||
}],
|
||||
})
|
||||
|
||||
# Transform raster into srid 4326.
|
||||
target = source.transform(3086)
|
||||
|
||||
# Reload data from disk
|
||||
target = GDALRaster(target.name)
|
||||
|
||||
self.assertEqual(target.srs.srid, 3086)
|
||||
self.assertEqual(target.width, 7)
|
||||
self.assertEqual(target.height, 7)
|
||||
self.assertEqual(target.bands[0].datatype(), source.bands[0].datatype())
|
||||
self.assertEqual(target.origin, [9124842.791079799, 1589911.6476407414])
|
||||
self.assertEqual(target.scale, [223824.82664250192, -223824.82664250192])
|
||||
self.assertEqual(target.skew, [0, 0])
|
||||
|
||||
result = target.bands[0].data()
|
||||
if numpy:
|
||||
result = result.flatten().tolist()
|
||||
|
||||
# The reprojection of a raster that spans over a large area
|
||||
# skews the data matrix and might introduce nodata values.
|
||||
self.assertEqual(
|
||||
result,
|
||||
[
|
||||
ndv, ndv, ndv, ndv, 4, ndv, ndv,
|
||||
ndv, ndv, 2, 3, 9, ndv, ndv,
|
||||
ndv, 1, 2, 8, 13, 19, ndv,
|
||||
0, 6, 6, 12, 18, 18, 24,
|
||||
ndv, 10, 11, 16, 22, 23, ndv,
|
||||
ndv, ndv, 15, 21, 22, ndv, ndv,
|
||||
ndv, ndv, 20, ndv, ndv, ndv, ndv,
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@unittest.skipUnless(HAS_GDAL, "GDAL is required")
|
||||
class GDALBandTests(unittest.TestCase):
|
||||
|
|
Loading…
Reference in New Issue