Fixed #3566 -- Added support for aggregation to the ORM. See the documentation for details on usage.
Many thanks to: * Nicolas Lara, who worked on this feature during the 2008 Google Summer of Code. * Alex Gaynor for his help debugging and fixing a number of issues. * Justin Bronn for his help integrating with contrib.gis. * Karen Tracey for her help with cross-platform testing. * Ian Kelly for his help testing and fixing Oracle support. * Malcolm Tredinnick for his invaluable review notes. git-svn-id: http://code.djangoproject.com/svn/django/trunk@9742 bcc190cf-cafb-0310-a4f2-bffc1f526a37
This commit is contained in:
parent
50a293a0c3
commit
cc4e4d9aee
1
AUTHORS
1
AUTHORS
|
@ -31,6 +31,7 @@ answer newbie questions, and generally made Django that much better:
|
|||
AgarFu <heaven@croasanaso.sytes.net>
|
||||
Dagur Páll Ammendrup <dagurp@gmail.com>
|
||||
Collin Anderson <cmawebsite@gmail.com>
|
||||
Nicolas Lara <nicolaslara@gmail.com>
|
||||
Jeff Anderson <jefferya@programmerq.net>
|
||||
Marian Andre <django@andre.sk>
|
||||
Andreas
|
||||
|
|
|
@ -0,0 +1,10 @@
|
|||
from django.db.models import Aggregate
|
||||
|
||||
class Extent(Aggregate):
|
||||
name = 'Extent'
|
||||
|
||||
class MakeLine(Aggregate):
|
||||
name = 'MakeLine'
|
||||
|
||||
class Union(Aggregate):
|
||||
name = 'Union'
|
|
@ -3,6 +3,7 @@ from django.db import connection
|
|||
from django.db.models.query import sql, QuerySet, Q
|
||||
|
||||
from django.contrib.gis.db.backend import SpatialBackend
|
||||
from django.contrib.gis.db.models import aggregates
|
||||
from django.contrib.gis.db.models.fields import GeometryField, PointField
|
||||
from django.contrib.gis.db.models.sql import AreaField, DistanceField, GeomField, GeoQuery, GeoWhereNode
|
||||
from django.contrib.gis.measure import Area, Distance
|
||||
|
@ -98,20 +99,7 @@ class GeoQuerySet(QuerySet):
|
|||
Returns the extent (aggregate) of the features in the GeoQuerySet. The
|
||||
extent will be returned as a 4-tuple, consisting of (xmin, ymin, xmax, ymax).
|
||||
"""
|
||||
convert_extent = None
|
||||
if SpatialBackend.postgis:
|
||||
def convert_extent(box, geo_field):
|
||||
# TODO: Parsing of BOX3D, Oracle support (patches welcome!)
|
||||
# Box text will be something like "BOX(-90.0 30.0, -85.0 40.0)";
|
||||
# parsing out and returning as a 4-tuple.
|
||||
ll, ur = box[4:-1].split(',')
|
||||
xmin, ymin = map(float, ll.split())
|
||||
xmax, ymax = map(float, ur.split())
|
||||
return (xmin, ymin, xmax, ymax)
|
||||
elif SpatialBackend.oracle:
|
||||
def convert_extent(wkt, geo_field):
|
||||
raise NotImplementedError
|
||||
return self._spatial_aggregate('extent', convert_func=convert_extent, **kwargs)
|
||||
return self._spatial_aggregate(aggregates.Extent, **kwargs)
|
||||
|
||||
def gml(self, precision=8, version=2, **kwargs):
|
||||
"""
|
||||
|
@ -163,9 +151,7 @@ class GeoQuerySet(QuerySet):
|
|||
this GeoQuerySet and returns it. This is a spatial aggregate
|
||||
method, and thus returns a geometry rather than a GeoQuerySet.
|
||||
"""
|
||||
kwargs['geo_field_type'] = PointField
|
||||
kwargs['agg_field'] = GeometryField
|
||||
return self._spatial_aggregate('make_line', **kwargs)
|
||||
return self._spatial_aggregate(aggregates.MakeLine, geo_field_type=PointField, **kwargs)
|
||||
|
||||
def mem_size(self, **kwargs):
|
||||
"""
|
||||
|
@ -288,11 +274,10 @@ class GeoQuerySet(QuerySet):
|
|||
None if the GeoQuerySet is empty. The `tolerance` keyword is for
|
||||
Oracle backends only.
|
||||
"""
|
||||
kwargs['agg_field'] = GeometryField
|
||||
return self._spatial_aggregate('unionagg', **kwargs)
|
||||
return self._spatial_aggregate(aggregates.Union, **kwargs)
|
||||
|
||||
### Private API -- Abstracted DRY routines. ###
|
||||
def _spatial_setup(self, att, aggregate=False, desc=None, field_name=None, geo_field_type=None):
|
||||
def _spatial_setup(self, att, desc=None, field_name=None, geo_field_type=None):
|
||||
"""
|
||||
Performs set up for executing the spatial function.
|
||||
"""
|
||||
|
@ -316,71 +301,37 @@ class GeoQuerySet(QuerySet):
|
|||
raise TypeError('"%s" stored procedures may only be called on %ss.' % (func, geo_field_type.__name__))
|
||||
|
||||
# Setting the procedure args.
|
||||
procedure_args['geo_col'] = self._geocol_select(geo_field, field_name, aggregate)
|
||||
procedure_args['geo_col'] = self._geocol_select(geo_field, field_name)
|
||||
|
||||
return procedure_args, geo_field
|
||||
|
||||
def _spatial_aggregate(self, att, field_name=None,
|
||||
agg_field=None, convert_func=None,
|
||||
geo_field_type=None, tolerance=0.0005):
|
||||
def _spatial_aggregate(self, aggregate, field_name=None,
|
||||
geo_field_type=None, tolerance=0.05):
|
||||
"""
|
||||
DRY routine for calling aggregate spatial stored procedures and
|
||||
returning their result to the caller of the function.
|
||||
"""
|
||||
# Constructing the setup keyword arguments.
|
||||
setup_kwargs = {'aggregate' : True,
|
||||
'field_name' : field_name,
|
||||
'geo_field_type' : geo_field_type,
|
||||
}
|
||||
procedure_args, geo_field = self._spatial_setup(att, **setup_kwargs)
|
||||
# Getting the field the geographic aggregate will be called on.
|
||||
geo_field = self.query._geo_field(field_name)
|
||||
if not geo_field:
|
||||
raise TypeError('%s aggregate only available on GeometryFields.' % aggregate.name)
|
||||
|
||||
if SpatialBackend.oracle:
|
||||
procedure_args['tolerance'] = tolerance
|
||||
# Adding in selection SQL for Oracle geometry columns.
|
||||
if agg_field is GeometryField:
|
||||
agg_sql = '%s' % SpatialBackend.select
|
||||
else:
|
||||
agg_sql = '%s'
|
||||
agg_sql = agg_sql % ('%(function)s(SDOAGGRTYPE(%(geo_col)s,%(tolerance)s))' % procedure_args)
|
||||
else:
|
||||
agg_sql = '%(function)s(%(geo_col)s)' % procedure_args
|
||||
# Checking if there are any geo field type limitations on this
|
||||
# aggregate (e.g. ST_Makeline only operates on PointFields).
|
||||
if not geo_field_type is None and not isinstance(geo_field, geo_field_type):
|
||||
raise TypeError('%s aggregate may only be called on %ss.' % (aggregate.name, geo_field_type.__name__))
|
||||
|
||||
# Wrapping our selection SQL in `GeomSQL` to bypass quoting, and
|
||||
# specifying the type of the aggregate field.
|
||||
self.query.select = [GeomSQL(agg_sql)]
|
||||
self.query.select_fields = [agg_field]
|
||||
# Getting the string expression of the field name, as this is the
|
||||
# argument taken by `Aggregate` objects.
|
||||
agg_col = field_name or geo_field.name
|
||||
|
||||
try:
|
||||
# `asql` => not overriding `sql` module.
|
||||
asql, params = self.query.as_sql()
|
||||
except sql.datastructures.EmptyResultSet:
|
||||
return None
|
||||
# Adding any keyword parameters for the Aggregate object. Oracle backends
|
||||
# in particular need an additional `tolerance` parameter.
|
||||
agg_kwargs = {}
|
||||
if SpatialBackend.oracle: agg_kwargs['tolerance'] = tolerance
|
||||
|
||||
# Getting a cursor, executing the query, and extracting the returned
|
||||
# value from the aggregate function.
|
||||
cursor = connection.cursor()
|
||||
cursor.execute(asql, params)
|
||||
result = cursor.fetchone()[0]
|
||||
|
||||
# If the `agg_field` is specified as a GeometryField, then autmatically
|
||||
# set up the conversion function.
|
||||
if agg_field is GeometryField and not callable(convert_func):
|
||||
if SpatialBackend.postgis:
|
||||
def convert_geom(hex, geo_field):
|
||||
if hex: return SpatialBackend.Geometry(hex)
|
||||
else: return None
|
||||
elif SpatialBackend.oracle:
|
||||
def convert_geom(clob, geo_field):
|
||||
if clob: return SpatialBackend.Geometry(clob.read(), geo_field._srid)
|
||||
else: return None
|
||||
convert_func = convert_geom
|
||||
|
||||
# Returning the callback function evaluated on the result culled
|
||||
# from the executed cursor.
|
||||
if callable(convert_func):
|
||||
return convert_func(result, geo_field)
|
||||
else:
|
||||
return result
|
||||
# Calling the QuerySet.aggregate, and returning only the value of the aggregate.
|
||||
return self.aggregate(_geoagg=aggregate(agg_col, **agg_kwargs))['_geoagg']
|
||||
|
||||
def _spatial_attribute(self, att, settings, field_name=None, model_att=None):
|
||||
"""
|
||||
|
@ -595,16 +546,12 @@ class GeoQuerySet(QuerySet):
|
|||
s['procedure_args']['tolerance'] = tolerance
|
||||
return self._spatial_attribute(func, s, **kwargs)
|
||||
|
||||
def _geocol_select(self, geo_field, field_name, aggregate=False):
|
||||
def _geocol_select(self, geo_field, field_name):
|
||||
"""
|
||||
Helper routine for constructing the SQL to select the geographic
|
||||
column. Takes into account if the geographic field is in a
|
||||
ForeignKey relation to the current model.
|
||||
"""
|
||||
# If this is an aggregate spatial query, the flag needs to be
|
||||
# set on the `GeoQuery` object of this queryset.
|
||||
if aggregate: self.query.aggregate = True
|
||||
|
||||
opts = self.model._meta
|
||||
if not geo_field in opts.fields:
|
||||
# Is this operation going to be on a related geographic field?
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
from django.db.models.sql.aggregates import *
|
||||
|
||||
from django.contrib.gis.db.models.fields import GeometryField
|
||||
from django.contrib.gis.db.backend import SpatialBackend
|
||||
|
||||
if SpatialBackend.oracle:
|
||||
geo_template = '%(function)s(SDOAGGRTYPE(%(field)s,%(tolerance)s))'
|
||||
else:
|
||||
geo_template = '%(function)s(%(field)s)'
|
||||
|
||||
class GeoAggregate(Aggregate):
|
||||
# Overriding the SQL template with the geographic one.
|
||||
sql_template = geo_template
|
||||
|
||||
is_extent = False
|
||||
|
||||
def __init__(self, col, source=None, is_summary=False, **extra):
|
||||
super(GeoAggregate, self).__init__(col, source, is_summary, **extra)
|
||||
|
||||
# Can't use geographic aggregates on non-geometry fields.
|
||||
if not isinstance(self.source, GeometryField):
|
||||
raise ValueError('Geospatial aggregates only allowed on geometry fields.')
|
||||
|
||||
# Making sure the SQL function is available for this spatial backend.
|
||||
if not self.sql_function:
|
||||
raise NotImplementedError('This aggregate functionality not implemented for your spatial backend.')
|
||||
|
||||
class Extent(GeoAggregate):
|
||||
is_extent = True
|
||||
sql_function = SpatialBackend.extent
|
||||
|
||||
class MakeLine(GeoAggregate):
|
||||
sql_function = SpatialBackend.make_line
|
||||
|
||||
class Union(GeoAggregate):
|
||||
sql_function = SpatialBackend.unionagg
|
|
@ -5,6 +5,7 @@ from django.db.models.fields.related import ForeignKey
|
|||
|
||||
from django.contrib.gis.db.backend import SpatialBackend
|
||||
from django.contrib.gis.db.models.fields import GeometryField
|
||||
from django.contrib.gis.db.models.sql import aggregates as gis_aggregates_module
|
||||
from django.contrib.gis.db.models.sql.where import GeoWhereNode
|
||||
from django.contrib.gis.measure import Area, Distance
|
||||
|
||||
|
@ -12,12 +13,35 @@ from django.contrib.gis.measure import Area, Distance
|
|||
ALL_TERMS = sql.constants.QUERY_TERMS.copy()
|
||||
ALL_TERMS.update(SpatialBackend.gis_terms)
|
||||
|
||||
# Conversion functions used in normalizing geographic aggregates.
|
||||
if SpatialBackend.postgis:
|
||||
def convert_extent(box):
|
||||
# TODO: Parsing of BOX3D, Oracle support (patches welcome!)
|
||||
# Box text will be something like "BOX(-90.0 30.0, -85.0 40.0)";
|
||||
# parsing out and returning as a 4-tuple.
|
||||
ll, ur = box[4:-1].split(',')
|
||||
xmin, ymin = map(float, ll.split())
|
||||
xmax, ymax = map(float, ur.split())
|
||||
return (xmin, ymin, xmax, ymax)
|
||||
|
||||
def convert_geom(hex, geo_field):
|
||||
if hex: return SpatialBackend.Geometry(hex)
|
||||
else: return None
|
||||
else:
|
||||
def convert_extent(box):
|
||||
raise NotImplementedError('Aggregate extent not implemented for this spatial backend.')
|
||||
|
||||
def convert_geom(clob, geo_field):
|
||||
if clob: return SpatialBackend.Geometry(clob.read(), geo_field._srid)
|
||||
else: return None
|
||||
|
||||
class GeoQuery(sql.Query):
|
||||
"""
|
||||
A single spatial SQL query.
|
||||
"""
|
||||
# Overridding the valid query terms.
|
||||
query_terms = ALL_TERMS
|
||||
aggregates_module = gis_aggregates_module
|
||||
|
||||
#### Methods overridden from the base Query class ####
|
||||
def __init__(self, model, conn):
|
||||
|
@ -25,7 +49,6 @@ class GeoQuery(sql.Query):
|
|||
# The following attributes are customized for the GeoQuerySet.
|
||||
# The GeoWhereNode and SpatialBackend classes contain backend-specific
|
||||
# routines and functions.
|
||||
self.aggregate = False
|
||||
self.custom_select = {}
|
||||
self.transformed_srid = None
|
||||
self.extra_select_fields = {}
|
||||
|
@ -34,7 +57,6 @@ class GeoQuery(sql.Query):
|
|||
obj = super(GeoQuery, self).clone(*args, **kwargs)
|
||||
# Customized selection dictionary and transformed srid flag have
|
||||
# to also be added to obj.
|
||||
obj.aggregate = self.aggregate
|
||||
obj.custom_select = self.custom_select.copy()
|
||||
obj.transformed_srid = self.transformed_srid
|
||||
obj.extra_select_fields = self.extra_select_fields.copy()
|
||||
|
@ -67,27 +89,42 @@ class GeoQuery(sql.Query):
|
|||
for col, field in izip(self.select, self.select_fields):
|
||||
if isinstance(col, (list, tuple)):
|
||||
r = self.get_field_select(field, col[0])
|
||||
if with_aliases and col[1] in col_aliases:
|
||||
if with_aliases:
|
||||
if col[1] in col_aliases:
|
||||
c_alias = 'Col%d' % len(col_aliases)
|
||||
result.append('%s AS %s' % (r, c_alias))
|
||||
aliases.add(c_alias)
|
||||
col_aliases.add(c_alias)
|
||||
else:
|
||||
result.append('%s AS %s' % (r, col[1]))
|
||||
aliases.add(r)
|
||||
col_aliases.add(col[1])
|
||||
else:
|
||||
result.append(r)
|
||||
aliases.add(r)
|
||||
col_aliases.add(col[1])
|
||||
else:
|
||||
result.append(col.as_sql(quote_func=qn))
|
||||
|
||||
if hasattr(col, 'alias'):
|
||||
aliases.add(col.alias)
|
||||
col_aliases.add(col.alias)
|
||||
|
||||
elif self.default_cols:
|
||||
cols, new_aliases = self.get_default_columns(with_aliases,
|
||||
col_aliases)
|
||||
result.extend(cols)
|
||||
aliases.update(new_aliases)
|
||||
|
||||
result.extend([
|
||||
'%s%s' % (
|
||||
aggregate.as_sql(quote_func=qn),
|
||||
alias is not None and ' AS %s' % alias or ''
|
||||
)
|
||||
for alias, aggregate in self.aggregate_select.items()
|
||||
])
|
||||
|
||||
# This loop customized for GeoQuery.
|
||||
if not self.aggregate:
|
||||
for (table, col), field in izip(self.related_select_cols, self.related_select_fields):
|
||||
r = self.get_field_select(field, table)
|
||||
if with_aliases and col in col_aliases:
|
||||
|
@ -154,16 +191,6 @@ class GeoQuery(sql.Query):
|
|||
return result, None
|
||||
return result, aliases
|
||||
|
||||
def get_ordering(self):
|
||||
"""
|
||||
This routine is overridden to disable ordering for aggregate
|
||||
spatial queries.
|
||||
"""
|
||||
if not self.aggregate:
|
||||
return super(GeoQuery, self).get_ordering()
|
||||
else:
|
||||
return ()
|
||||
|
||||
def resolve_columns(self, row, fields=()):
|
||||
"""
|
||||
This routine is necessary so that distances and geometries returned
|
||||
|
@ -212,6 +239,19 @@ class GeoQuery(sql.Query):
|
|||
value = SpatialBackend.Geometry(value)
|
||||
return value
|
||||
|
||||
def resolve_aggregate(self, value, aggregate):
|
||||
"""
|
||||
Overridden from GeoQuery's normalize to handle the conversion of
|
||||
GeoAggregate objects.
|
||||
"""
|
||||
if isinstance(aggregate, self.aggregates_module.GeoAggregate):
|
||||
if aggregate.is_extent:
|
||||
return convert_extent(value)
|
||||
else:
|
||||
return convert_geom(value, aggregate.source)
|
||||
else:
|
||||
return super(GeoQuery, self).resolve_aggregate(value, aggregate)
|
||||
|
||||
#### Routines unique to GeoQuery ####
|
||||
def get_extra_select_format(self, alias):
|
||||
sel_fmt = '%s'
|
||||
|
|
|
@ -10,6 +10,12 @@ except NameError:
|
|||
# Python 2.3 compat
|
||||
from sets import Set as set
|
||||
|
||||
try:
|
||||
import decimal
|
||||
except ImportError:
|
||||
# Python 2.3 fallback
|
||||
from django.utils import _decimal as decimal
|
||||
|
||||
from django.db.backends import util
|
||||
from django.utils import datetime_safe
|
||||
|
||||
|
@ -62,6 +68,7 @@ class BaseDatabaseWrapper(local):
|
|||
return util.CursorDebugWrapper(cursor, self)
|
||||
|
||||
class BaseDatabaseFeatures(object):
|
||||
allows_group_by_pk = False
|
||||
# True if django.db.backend.utils.typecast_timestamp is used on values
|
||||
# returned from dates() calls.
|
||||
needs_datetime_string_cast = True
|
||||
|
@ -376,6 +383,22 @@ class BaseDatabaseOperations(object):
|
|||
"""
|
||||
return self.year_lookup_bounds(value)
|
||||
|
||||
def convert_values(self, value, field):
|
||||
"""Coerce the value returned by the database backend into a consistent type that
|
||||
is compatible with the field type.
|
||||
"""
|
||||
internal_type = field.get_internal_type()
|
||||
if internal_type == 'DecimalField':
|
||||
return value
|
||||
elif internal_type and internal_type.endswith('IntegerField') or internal_type == 'AutoField':
|
||||
return int(value)
|
||||
elif internal_type in ('DateField', 'DateTimeField', 'TimeField'):
|
||||
return value
|
||||
# No field, or the field isn't known to be a decimal or integer
|
||||
# Default to a float
|
||||
return float(value)
|
||||
|
||||
|
||||
class BaseDatabaseIntrospection(object):
|
||||
"""
|
||||
This class encapsulates all backend-specific introspection utilities
|
||||
|
|
|
@ -110,6 +110,7 @@ class CursorWrapper(object):
|
|||
class DatabaseFeatures(BaseDatabaseFeatures):
|
||||
empty_fetchmany_value = ()
|
||||
update_can_self_select = False
|
||||
allows_group_by_pk = True
|
||||
related_fields_match_type = True
|
||||
|
||||
class DatabaseOperations(BaseDatabaseOperations):
|
||||
|
|
|
@ -53,21 +53,23 @@ def query_class(QueryClass, Database):
|
|||
return values
|
||||
|
||||
def convert_values(self, value, field):
|
||||
from django.db.models.fields import DateField, DateTimeField, \
|
||||
TimeField, BooleanField, NullBooleanField, DecimalField, Field
|
||||
from django.db.models.fields import Field
|
||||
if isinstance(value, Database.LOB):
|
||||
value = value.read()
|
||||
# Oracle stores empty strings as null. We need to undo this in
|
||||
# order to adhere to the Django convention of using the empty
|
||||
# string instead of null, but only if the field accepts the
|
||||
# empty string.
|
||||
if value is None and isinstance(field, Field) and field.empty_strings_allowed:
|
||||
if value is None and field and field.empty_strings_allowed:
|
||||
value = u''
|
||||
# Convert 1 or 0 to True or False
|
||||
elif value in (1, 0) and isinstance(field, (BooleanField, NullBooleanField)):
|
||||
elif value in (1, 0) and field and field.get_internal_type() in ('BooleanField', 'NullBooleanField'):
|
||||
value = bool(value)
|
||||
# Force floats to the correct type
|
||||
elif value is not None and field and field.get_internal_type() == 'FloatField':
|
||||
value = float(value)
|
||||
# Convert floats to decimals
|
||||
elif value is not None and isinstance(field, DecimalField):
|
||||
elif value is not None and field and field.get_internal_type() == 'DecimalField':
|
||||
value = util.typecast_decimal(field.format_number(value))
|
||||
# cx_Oracle always returns datetime.datetime objects for
|
||||
# DATE and TIMESTAMP columns, but Django wants to see a
|
||||
|
@ -86,13 +88,9 @@ def query_class(QueryClass, Database):
|
|||
value = datetime.datetime(value.year, value.month,
|
||||
value.day, value.hour, value.minute, value.second,
|
||||
value.fsecond)
|
||||
if isinstance(field, DateTimeField):
|
||||
# DateTimeField subclasses DateField so must be checked
|
||||
# first.
|
||||
pass
|
||||
elif isinstance(field, DateField):
|
||||
if field and field.get_internal_type() == 'DateField':
|
||||
value = value.date()
|
||||
elif isinstance(field, TimeField) or (value.year == 1900 and value.month == value.day == 1):
|
||||
elif field and field.get_internal_type() == 'TimeField' or (value.year == 1900 and value.month == value.day == 1):
|
||||
value = value.time()
|
||||
elif value.hour == value.minute == value.second == value.microsecond == 0:
|
||||
value = value.date()
|
||||
|
|
|
@ -102,6 +102,26 @@ class DatabaseOperations(BaseDatabaseOperations):
|
|||
second = '%s-12-31 23:59:59.999999'
|
||||
return [first % value, second % value]
|
||||
|
||||
def convert_values(self, value, field):
|
||||
"""SQLite returns floats when it should be returning decimals,
|
||||
and gets dates and datetimes wrong.
|
||||
For consistency with other backends, coerce when required.
|
||||
"""
|
||||
internal_type = field.get_internal_type()
|
||||
if internal_type == 'DecimalField':
|
||||
return util.typecast_decimal(field.format_number(value))
|
||||
elif internal_type and internal_type.endswith('IntegerField') or internal_type == 'AutoField':
|
||||
return int(value)
|
||||
elif internal_type == 'DateField':
|
||||
return util.typecast_date(value)
|
||||
elif internal_type == 'DateTimeField':
|
||||
return util.typecast_timestamp(value)
|
||||
elif internal_type == 'TimeField':
|
||||
return util.typecast_time(value)
|
||||
|
||||
# No field, or the field isn't known to be a decimal or integer
|
||||
return value
|
||||
|
||||
class DatabaseWrapper(BaseDatabaseWrapper):
|
||||
|
||||
# SQLite requires LIKE statements to include an ESCAPE clause if the value
|
||||
|
|
|
@ -5,6 +5,7 @@ from django.db.models.loading import get_apps, get_app, get_models, get_model, r
|
|||
from django.db.models.query import Q
|
||||
from django.db.models.manager import Manager
|
||||
from django.db.models.base import Model
|
||||
from django.db.models.aggregates import *
|
||||
from django.db.models.fields import *
|
||||
from django.db.models.fields.subclassing import SubfieldBase
|
||||
from django.db.models.fields.files import FileField, ImageField
|
||||
|
|
|
@ -0,0 +1,66 @@
|
|||
"""
|
||||
Classes to represent the definitions of aggregate functions.
|
||||
"""
|
||||
|
||||
class Aggregate(object):
|
||||
"""
|
||||
Default Aggregate definition.
|
||||
"""
|
||||
def __init__(self, lookup, **extra):
|
||||
"""Instantiate a new aggregate.
|
||||
|
||||
* lookup is the field on which the aggregate operates.
|
||||
* extra is a dictionary of additional data to provide for the
|
||||
aggregate definition
|
||||
|
||||
Also utilizes the class variables:
|
||||
* name, the identifier for this aggregate function.
|
||||
"""
|
||||
self.lookup = lookup
|
||||
self.extra = extra
|
||||
|
||||
def _default_alias(self):
|
||||
return '%s__%s' % (self.lookup, self.name.lower())
|
||||
default_alias = property(_default_alias)
|
||||
|
||||
def add_to_query(self, query, alias, col, source, is_summary):
|
||||
"""Add the aggregate to the nominated query.
|
||||
|
||||
This method is used to convert the generic Aggregate definition into a
|
||||
backend-specific definition.
|
||||
|
||||
* query is the backend-specific query instance to which the aggregate
|
||||
is to be added.
|
||||
* col is a column reference describing the subject field
|
||||
of the aggregate. It can be an alias, or a tuple describing
|
||||
a table and column name.
|
||||
* source is the underlying field or aggregate definition for
|
||||
the column reference. If the aggregate is not an ordinal or
|
||||
computed type, this reference is used to determine the coerced
|
||||
output type of the aggregate.
|
||||
* is_summary is a boolean that is set True if the aggregate is a
|
||||
summary value rather than an annotation.
|
||||
"""
|
||||
aggregate = getattr(query.aggregates_module, self.name)
|
||||
query.aggregate_select[alias] = aggregate(col, source=source, is_summary=is_summary, **self.extra)
|
||||
|
||||
class Avg(Aggregate):
|
||||
name = 'Avg'
|
||||
|
||||
class Count(Aggregate):
|
||||
name = 'Count'
|
||||
|
||||
class Max(Aggregate):
|
||||
name = 'Max'
|
||||
|
||||
class Min(Aggregate):
|
||||
name = 'Min'
|
||||
|
||||
class StdDev(Aggregate):
|
||||
name = 'StdDev'
|
||||
|
||||
class Sum(Aggregate):
|
||||
name = 'Sum'
|
||||
|
||||
class Variance(Aggregate):
|
||||
name = 'Variance'
|
|
@ -101,6 +101,12 @@ class Manager(object):
|
|||
def filter(self, *args, **kwargs):
|
||||
return self.get_query_set().filter(*args, **kwargs)
|
||||
|
||||
def aggregate(self, *args, **kwargs):
|
||||
return self.get_query_set().aggregate(*args, **kwargs)
|
||||
|
||||
def annotate(self, *args, **kwargs):
|
||||
return self.get_query_set().annotate(*args, **kwargs)
|
||||
|
||||
def complex_filter(self, *args, **kwargs):
|
||||
return self.get_query_set().complex_filter(*args, **kwargs)
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@ except NameError:
|
|||
from sets import Set as set # Python 2.3 fallback
|
||||
|
||||
from django.db import connection, transaction, IntegrityError
|
||||
from django.db.models.aggregates import Aggregate
|
||||
from django.db.models.fields import DateField
|
||||
from django.db.models.query_utils import Q, select_related_descend
|
||||
from django.db.models import signals, sql
|
||||
|
@ -270,18 +271,47 @@ class QuerySet(object):
|
|||
else:
|
||||
requested = None
|
||||
max_depth = self.query.max_depth
|
||||
|
||||
extra_select = self.query.extra_select.keys()
|
||||
aggregate_select = self.query.aggregate_select.keys()
|
||||
|
||||
index_start = len(extra_select)
|
||||
aggregate_start = index_start + len(self.model._meta.fields)
|
||||
|
||||
for row in self.query.results_iter():
|
||||
if fill_cache:
|
||||
obj, _ = get_cached_row(self.model, row, index_start,
|
||||
max_depth, requested=requested)
|
||||
obj, aggregate_start = get_cached_row(self.model, row,
|
||||
index_start, max_depth, requested=requested)
|
||||
else:
|
||||
obj = self.model(*row[index_start:])
|
||||
# omit aggregates in object creation
|
||||
obj = self.model(*row[index_start:aggregate_start])
|
||||
|
||||
for i, k in enumerate(extra_select):
|
||||
setattr(obj, k, row[i])
|
||||
|
||||
# Add the aggregates to the model
|
||||
for i, aggregate in enumerate(aggregate_select):
|
||||
setattr(obj, aggregate, row[i+aggregate_start])
|
||||
|
||||
yield obj
|
||||
|
||||
def aggregate(self, *args, **kwargs):
|
||||
"""
|
||||
Returns a dictionary containing the calculations (aggregation)
|
||||
over the current queryset
|
||||
|
||||
If args is present the expression is passed as a kwarg ussing
|
||||
the Aggregate object's default alias.
|
||||
"""
|
||||
for arg in args:
|
||||
kwargs[arg.default_alias] = arg
|
||||
|
||||
for (alias, aggregate_expr) in kwargs.items():
|
||||
self.query.add_aggregate(aggregate_expr, self.model, alias,
|
||||
is_summary=True)
|
||||
|
||||
return self.query.get_aggregation()
|
||||
|
||||
def count(self):
|
||||
"""
|
||||
Performs a SELECT COUNT() and returns the number of records as an
|
||||
|
@ -553,6 +583,25 @@ class QuerySet(object):
|
|||
"""
|
||||
self.query.select_related = other.query.select_related
|
||||
|
||||
def annotate(self, *args, **kwargs):
|
||||
"""
|
||||
Return a query set in which the returned objects have been annotated
|
||||
with data aggregated from related fields.
|
||||
"""
|
||||
for arg in args:
|
||||
kwargs[arg.default_alias] = arg
|
||||
|
||||
obj = self._clone()
|
||||
|
||||
obj._setup_aggregate_query()
|
||||
|
||||
# Add the aggregates to the query
|
||||
for (alias, aggregate_expr) in kwargs.items():
|
||||
obj.query.add_aggregate(aggregate_expr, self.model, alias,
|
||||
is_summary=False)
|
||||
|
||||
return obj
|
||||
|
||||
def order_by(self, *field_names):
|
||||
"""
|
||||
Returns a new QuerySet instance with the ordering changed.
|
||||
|
@ -641,6 +690,16 @@ class QuerySet(object):
|
|||
"""
|
||||
pass
|
||||
|
||||
def _setup_aggregate_query(self):
|
||||
"""
|
||||
Prepare the query for computing a result that contains aggregate annotations.
|
||||
"""
|
||||
opts = self.model._meta
|
||||
if not self.query.group_by:
|
||||
field_names = [f.attname for f in opts.fields]
|
||||
self.query.add_fields(field_names, False)
|
||||
self.query.set_group_by()
|
||||
|
||||
def as_sql(self):
|
||||
"""
|
||||
Returns the internal query's SQL and parameters (as a tuple).
|
||||
|
@ -669,6 +728,8 @@ class ValuesQuerySet(QuerySet):
|
|||
len(self.field_names) != len(self.model._meta.fields)):
|
||||
self.query.trim_extra_select(self.extra_names)
|
||||
names = self.query.extra_select.keys() + self.field_names
|
||||
names.extend(self.query.aggregate_select.keys())
|
||||
|
||||
for row in self.query.results_iter():
|
||||
yield dict(zip(names, row))
|
||||
|
||||
|
@ -682,20 +743,25 @@ class ValuesQuerySet(QuerySet):
|
|||
"""
|
||||
self.query.clear_select_fields()
|
||||
self.extra_names = []
|
||||
self.aggregate_names = []
|
||||
|
||||
if self._fields:
|
||||
if not self.query.extra_select:
|
||||
if not self.query.extra_select and not self.query.aggregate_select:
|
||||
field_names = list(self._fields)
|
||||
else:
|
||||
field_names = []
|
||||
for f in self._fields:
|
||||
if self.query.extra_select.has_key(f):
|
||||
self.extra_names.append(f)
|
||||
elif self.query.aggregate_select.has_key(f):
|
||||
self.aggregate_names.append(f)
|
||||
else:
|
||||
field_names.append(f)
|
||||
else:
|
||||
# Default to all fields.
|
||||
field_names = [f.attname for f in self.model._meta.fields]
|
||||
|
||||
self.query.select = []
|
||||
self.query.add_fields(field_names, False)
|
||||
self.query.default_cols = False
|
||||
self.field_names = field_names
|
||||
|
@ -711,6 +777,7 @@ class ValuesQuerySet(QuerySet):
|
|||
c._fields = self._fields[:]
|
||||
c.field_names = self.field_names
|
||||
c.extra_names = self.extra_names
|
||||
c.aggregate_names = self.aggregate_names
|
||||
if setup and hasattr(c, '_setup_query'):
|
||||
c._setup_query()
|
||||
return c
|
||||
|
@ -718,10 +785,18 @@ class ValuesQuerySet(QuerySet):
|
|||
def _merge_sanity_check(self, other):
|
||||
super(ValuesQuerySet, self)._merge_sanity_check(other)
|
||||
if (set(self.extra_names) != set(other.extra_names) or
|
||||
set(self.field_names) != set(other.field_names)):
|
||||
set(self.field_names) != set(other.field_names) or
|
||||
self.aggregate_names != other.aggregate_names):
|
||||
raise TypeError("Merging '%s' classes must involve the same values in each case."
|
||||
% self.__class__.__name__)
|
||||
|
||||
def _setup_aggregate_query(self):
|
||||
"""
|
||||
Prepare the query for computing a result that contains aggregate annotations.
|
||||
"""
|
||||
self.query.set_group_by()
|
||||
|
||||
super(ValuesQuerySet, self)._setup_aggregate_query()
|
||||
|
||||
class ValuesListQuerySet(ValuesQuerySet):
|
||||
def iterator(self):
|
||||
|
@ -729,14 +804,14 @@ class ValuesListQuerySet(ValuesQuerySet):
|
|||
if self.flat and len(self._fields) == 1:
|
||||
for row in self.query.results_iter():
|
||||
yield row[0]
|
||||
elif not self.query.extra_select:
|
||||
elif not self.query.extra_select and not self.query.aggregate_select:
|
||||
for row in self.query.results_iter():
|
||||
yield tuple(row)
|
||||
else:
|
||||
# When extra(select=...) is involved, the extra cols come are
|
||||
# always at the start of the row, so we need to reorder the fields
|
||||
# to match the order in self._fields.
|
||||
names = self.query.extra_select.keys() + self.field_names
|
||||
names = self.query.extra_select.keys() + self.field_names + self.query.aggregate_select.keys()
|
||||
for row in self.query.results_iter():
|
||||
data = dict(zip(names, row))
|
||||
yield tuple([data[f] for f in self._fields])
|
||||
|
|
|
@ -64,4 +64,3 @@ def select_related_descend(field, restricted, requested):
|
|||
if not restricted and field.null:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
|
|
@ -0,0 +1,130 @@
|
|||
"""
|
||||
Classes to represent the default SQL aggregate functions
|
||||
"""
|
||||
|
||||
class AggregateField(object):
|
||||
"""An internal field mockup used to identify aggregates in the
|
||||
data-conversion parts of the database backend.
|
||||
"""
|
||||
def __init__(self, internal_type):
|
||||
self.internal_type = internal_type
|
||||
def get_internal_type(self):
|
||||
return self.internal_type
|
||||
|
||||
ordinal_aggregate_field = AggregateField('IntegerField')
|
||||
computed_aggregate_field = AggregateField('FloatField')
|
||||
|
||||
class Aggregate(object):
|
||||
"""
|
||||
Default SQL Aggregate.
|
||||
"""
|
||||
is_ordinal = False
|
||||
is_computed = False
|
||||
sql_template = '%(function)s(%(field)s)'
|
||||
|
||||
def __init__(self, col, source=None, is_summary=False, **extra):
|
||||
"""Instantiate an SQL aggregate
|
||||
|
||||
* col is a column reference describing the subject field
|
||||
of the aggregate. It can be an alias, or a tuple describing
|
||||
a table and column name.
|
||||
* source is the underlying field or aggregate definition for
|
||||
the column reference. If the aggregate is not an ordinal or
|
||||
computed type, this reference is used to determine the coerced
|
||||
output type of the aggregate.
|
||||
* extra is a dictionary of additional data to provide for the
|
||||
aggregate definition
|
||||
|
||||
Also utilizes the class variables:
|
||||
* sql_function, the name of the SQL function that implements the
|
||||
aggregate.
|
||||
* sql_template, a template string that is used to render the
|
||||
aggregate into SQL.
|
||||
* is_ordinal, a boolean indicating if the output of this aggregate
|
||||
is an integer (e.g., a count)
|
||||
* is_computed, a boolean indicating if this output of this aggregate
|
||||
is a computed float (e.g., an average), regardless of the input
|
||||
type.
|
||||
|
||||
"""
|
||||
self.col = col
|
||||
self.source = source
|
||||
self.is_summary = is_summary
|
||||
self.extra = extra
|
||||
|
||||
# Follow the chain of aggregate sources back until you find an
|
||||
# actual field, or an aggregate that forces a particular output
|
||||
# type. This type of this field will be used to coerce values
|
||||
# retrieved from the database.
|
||||
tmp = self
|
||||
|
||||
while tmp and isinstance(tmp, Aggregate):
|
||||
if getattr(tmp, 'is_ordinal', False):
|
||||
tmp = ordinal_aggregate_field
|
||||
elif getattr(tmp, 'is_computed', False):
|
||||
tmp = computed_aggregate_field
|
||||
else:
|
||||
tmp = tmp.source
|
||||
|
||||
self.field = tmp
|
||||
|
||||
def relabel_aliases(self, change_map):
|
||||
if isinstance(self.col, (list, tuple)):
|
||||
self.col = (change_map.get(self.col[0], self.col[0]), self.col[1])
|
||||
|
||||
def as_sql(self, quote_func=None):
|
||||
"Return the aggregate, rendered as SQL."
|
||||
if not quote_func:
|
||||
quote_func = lambda x: x
|
||||
|
||||
if hasattr(self.col, 'as_sql'):
|
||||
field_name = self.col.as_sql(quote_func)
|
||||
elif isinstance(self.col, (list, tuple)):
|
||||
field_name = '.'.join([quote_func(c) for c in self.col])
|
||||
else:
|
||||
field_name = self.col
|
||||
|
||||
params = {
|
||||
'function': self.sql_function,
|
||||
'field': field_name
|
||||
}
|
||||
params.update(self.extra)
|
||||
|
||||
return self.sql_template % params
|
||||
|
||||
|
||||
class Avg(Aggregate):
|
||||
is_computed = True
|
||||
sql_function = 'AVG'
|
||||
|
||||
class Count(Aggregate):
|
||||
is_ordinal = True
|
||||
sql_function = 'COUNT'
|
||||
sql_template = '%(function)s(%(distinct)s%(field)s)'
|
||||
|
||||
def __init__(self, col, distinct=False, **extra):
|
||||
super(Count, self).__init__(col, distinct=distinct and 'DISTINCT ' or '', **extra)
|
||||
|
||||
class Max(Aggregate):
|
||||
sql_function = 'MAX'
|
||||
|
||||
class Min(Aggregate):
|
||||
sql_function = 'MIN'
|
||||
|
||||
class StdDev(Aggregate):
|
||||
is_computed = True
|
||||
|
||||
def __init__(self, col, sample=False, **extra):
|
||||
super(StdDev, self).__init__(col, **extra)
|
||||
self.sql_function = sample and 'STDDEV_SAMP' or 'STDDEV_POP'
|
||||
|
||||
class Sum(Aggregate):
|
||||
sql_function = 'SUM'
|
||||
|
||||
class Variance(Aggregate):
|
||||
is_computed = True
|
||||
|
||||
def __init__(self, col, sample=False, **extra):
|
||||
super(Variance, self).__init__(col, **extra)
|
||||
self.sql_function = sample and 'VAR_SAMP' or 'VAR_POP'
|
||||
|
|
@ -25,59 +25,6 @@ class RawValue(object):
|
|||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
class Aggregate(object):
|
||||
"""
|
||||
Base class for all aggregate-related classes (min, max, avg, count, sum).
|
||||
"""
|
||||
def relabel_aliases(self, change_map):
|
||||
"""
|
||||
Relabel the column alias, if necessary. Must be implemented by
|
||||
subclasses.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def as_sql(self, quote_func=None):
|
||||
"""
|
||||
Returns the SQL string fragment for this object.
|
||||
|
||||
The quote_func function is used to quote the column components. If
|
||||
None, it defaults to doing nothing.
|
||||
|
||||
Must be implemented by subclasses.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
class Count(Aggregate):
|
||||
"""
|
||||
Perform a count on the given column.
|
||||
"""
|
||||
def __init__(self, col='*', distinct=False):
|
||||
"""
|
||||
Set the column to count on (defaults to '*') and set whether the count
|
||||
should be distinct or not.
|
||||
"""
|
||||
self.col = col
|
||||
self.distinct = distinct
|
||||
|
||||
def relabel_aliases(self, change_map):
|
||||
c = self.col
|
||||
if isinstance(c, (list, tuple)):
|
||||
self.col = (change_map.get(c[0], c[0]), c[1])
|
||||
|
||||
def as_sql(self, quote_func=None):
|
||||
if not quote_func:
|
||||
quote_func = lambda x: x
|
||||
if isinstance(self.col, (list, tuple)):
|
||||
col = ('%s.%s' % tuple([quote_func(c) for c in self.col]))
|
||||
elif hasattr(self.col, 'as_sql'):
|
||||
col = self.col.as_sql(quote_func)
|
||||
else:
|
||||
col = self.col
|
||||
if self.distinct:
|
||||
return 'COUNT(DISTINCT %s)' % col
|
||||
else:
|
||||
return 'COUNT(%s)' % col
|
||||
|
||||
class Date(object):
|
||||
"""
|
||||
Add a date selection column.
|
||||
|
|
|
@ -12,12 +12,13 @@ from copy import deepcopy
|
|||
from django.utils.tree import Node
|
||||
from django.utils.datastructures import SortedDict
|
||||
from django.utils.encoding import force_unicode
|
||||
from django.db.backends.util import truncate_name
|
||||
from django.db import connection
|
||||
from django.db.models import signals
|
||||
from django.db.models.fields import FieldDoesNotExist
|
||||
from django.db.models.query_utils import select_related_descend
|
||||
from django.db.models.sql import aggregates as base_aggregates_module
|
||||
from django.db.models.sql.where import WhereNode, Constraint, EverythingNode, AND, OR
|
||||
from django.db.models.sql.datastructures import Count
|
||||
from django.core.exceptions import FieldError
|
||||
from datastructures import EmptyResultSet, Empty, MultiJoin
|
||||
from constants import *
|
||||
|
@ -40,6 +41,7 @@ class BaseQuery(object):
|
|||
|
||||
alias_prefix = 'T'
|
||||
query_terms = QUERY_TERMS
|
||||
aggregates_module = base_aggregates_module
|
||||
|
||||
def __init__(self, model, connection, where=WhereNode):
|
||||
self.model = model
|
||||
|
@ -73,6 +75,9 @@ class BaseQuery(object):
|
|||
self.select_related = False
|
||||
self.related_select_cols = []
|
||||
|
||||
# SQL aggregate-related attributes
|
||||
self.aggregate_select = SortedDict() # Maps alias -> SQL aggregate function
|
||||
|
||||
# Arbitrary maximum limit for select_related. Prevents infinite
|
||||
# recursion. Can be changed by the depth parameter to select_related().
|
||||
self.max_depth = 5
|
||||
|
@ -178,6 +183,7 @@ class BaseQuery(object):
|
|||
obj.distinct = self.distinct
|
||||
obj.select_related = self.select_related
|
||||
obj.related_select_cols = []
|
||||
obj.aggregate_select = self.aggregate_select.copy()
|
||||
obj.max_depth = self.max_depth
|
||||
obj.extra_select = self.extra_select.copy()
|
||||
obj.extra_tables = self.extra_tables
|
||||
|
@ -194,6 +200,35 @@ class BaseQuery(object):
|
|||
obj._setup_query()
|
||||
return obj
|
||||
|
||||
def convert_values(self, value, field):
|
||||
"""Convert the database-returned value into a type that is consistent
|
||||
across database backends.
|
||||
|
||||
By default, this defers to the underlying backend operations, but
|
||||
it can be overridden by Query classes for specific backends.
|
||||
"""
|
||||
return self.connection.ops.convert_values(value, field)
|
||||
|
||||
def resolve_aggregate(self, value, aggregate):
|
||||
"""Resolve the value of aggregates returned by the database to
|
||||
consistent (and reasonable) types.
|
||||
|
||||
This is required because of the predisposition of certain backends
|
||||
to return Decimal and long types when they are not needed.
|
||||
"""
|
||||
if value is None:
|
||||
# Return None as-is
|
||||
return value
|
||||
elif aggregate.is_ordinal:
|
||||
# Any ordinal aggregate (e.g., count) returns an int
|
||||
return int(value)
|
||||
elif aggregate.is_computed:
|
||||
# Any computed aggregate (e.g., avg) returns a float
|
||||
return float(value)
|
||||
else:
|
||||
# Return value depends on the type of the field being processed.
|
||||
return self.convert_values(value, aggregate.field)
|
||||
|
||||
def results_iter(self):
|
||||
"""
|
||||
Returns an iterator over the results from executing this query.
|
||||
|
@ -212,29 +247,78 @@ class BaseQuery(object):
|
|||
else:
|
||||
fields = self.model._meta.fields
|
||||
row = self.resolve_columns(row, fields)
|
||||
|
||||
if self.aggregate_select:
|
||||
aggregate_start = len(self.extra_select.keys()) + len(self.select)
|
||||
row = tuple(row[:aggregate_start]) + tuple([
|
||||
self.resolve_aggregate(value, aggregate)
|
||||
for (alias, aggregate), value
|
||||
in zip(self.aggregate_select.items(), row[aggregate_start:])
|
||||
])
|
||||
|
||||
yield row
|
||||
|
||||
def get_aggregation(self):
|
||||
"""
|
||||
Returns the dictionary with the values of the existing aggregations.
|
||||
"""
|
||||
if not self.aggregate_select:
|
||||
return {}
|
||||
|
||||
# If there is a group by clause, aggregating does not add useful
|
||||
# information but retrieves only the first row. Aggregate
|
||||
# over the subquery instead.
|
||||
if self.group_by:
|
||||
from subqueries import AggregateQuery
|
||||
query = AggregateQuery(self.model, self.connection)
|
||||
|
||||
obj = self.clone()
|
||||
|
||||
# Remove any aggregates marked for reduction from the subquery
|
||||
# and move them to the outer AggregateQuery.
|
||||
for alias, aggregate in self.aggregate_select.items():
|
||||
if aggregate.is_summary:
|
||||
query.aggregate_select[alias] = aggregate
|
||||
del obj.aggregate_select[alias]
|
||||
|
||||
query.add_subquery(obj)
|
||||
else:
|
||||
query = self
|
||||
self.select = []
|
||||
self.default_cols = False
|
||||
self.extra_select = {}
|
||||
|
||||
query.clear_ordering(True)
|
||||
query.clear_limits()
|
||||
query.select_related = False
|
||||
query.related_select_cols = []
|
||||
query.related_select_fields = []
|
||||
|
||||
return dict([
|
||||
(alias, self.resolve_aggregate(val, aggregate))
|
||||
for (alias, aggregate), val
|
||||
in zip(query.aggregate_select.items(), query.execute_sql(SINGLE))
|
||||
])
|
||||
|
||||
def get_count(self):
|
||||
"""
|
||||
Performs a COUNT() query using the current filter constraints.
|
||||
"""
|
||||
from subqueries import CountQuery
|
||||
obj = self.clone()
|
||||
obj.clear_ordering(True)
|
||||
obj.clear_limits()
|
||||
obj.select_related = False
|
||||
obj.related_select_cols = []
|
||||
obj.related_select_fields = []
|
||||
if len(obj.select) > 1:
|
||||
obj = self.clone(CountQuery, _query=obj, where=self.where_class(),
|
||||
distinct=False)
|
||||
obj.select = []
|
||||
obj.extra_select = SortedDict()
|
||||
if len(self.select) > 1:
|
||||
# If a select clause exists, then the query has already started to
|
||||
# specify the columns that are to be returned.
|
||||
# In this case, we need to use a subquery to evaluate the count.
|
||||
from subqueries import AggregateQuery
|
||||
subquery = obj
|
||||
subquery.clear_ordering(True)
|
||||
subquery.clear_limits()
|
||||
|
||||
obj = AggregateQuery(obj.model, obj.connection)
|
||||
obj.add_subquery(subquery)
|
||||
|
||||
obj.add_count_column()
|
||||
data = obj.execute_sql(SINGLE)
|
||||
if not data:
|
||||
return 0
|
||||
number = data[0]
|
||||
number = obj.get_aggregation()[None]
|
||||
|
||||
# Apply offset and limit constraints manually, since using LIMIT/OFFSET
|
||||
# in SQL (in variants that provide them) doesn't change the COUNT
|
||||
|
@ -450,25 +534,41 @@ class BaseQuery(object):
|
|||
for col in self.select:
|
||||
if isinstance(col, (list, tuple)):
|
||||
r = '%s.%s' % (qn(col[0]), qn(col[1]))
|
||||
if with_aliases and col[1] in col_aliases:
|
||||
if with_aliases:
|
||||
if col[1] in col_aliases:
|
||||
c_alias = 'Col%d' % len(col_aliases)
|
||||
result.append('%s AS %s' % (r, c_alias))
|
||||
aliases.add(c_alias)
|
||||
col_aliases.add(c_alias)
|
||||
else:
|
||||
result.append('%s AS %s' % (r, col[1]))
|
||||
aliases.add(r)
|
||||
col_aliases.add(col[1])
|
||||
else:
|
||||
result.append(r)
|
||||
aliases.add(r)
|
||||
col_aliases.add(col[1])
|
||||
else:
|
||||
result.append(col.as_sql(quote_func=qn))
|
||||
|
||||
if hasattr(col, 'alias'):
|
||||
aliases.add(col.alias)
|
||||
col_aliases.add(col.alias)
|
||||
|
||||
elif self.default_cols:
|
||||
cols, new_aliases = self.get_default_columns(with_aliases,
|
||||
col_aliases)
|
||||
result.extend(cols)
|
||||
aliases.update(new_aliases)
|
||||
|
||||
result.extend([
|
||||
'%s%s' % (
|
||||
aggregate.as_sql(quote_func=qn),
|
||||
alias is not None and ' AS %s' % qn(alias) or ''
|
||||
)
|
||||
for alias, aggregate in self.aggregate_select.items()
|
||||
])
|
||||
|
||||
for table, col in self.related_select_cols:
|
||||
r = '%s.%s' % (qn(table), qn(col))
|
||||
if with_aliases and col in col_aliases:
|
||||
|
@ -538,7 +638,7 @@ class BaseQuery(object):
|
|||
Returns a list of strings that are joined together to go after the
|
||||
"FROM" part of the query, as well as a list any extra parameters that
|
||||
need to be included. Sub-classes, can override this to create a
|
||||
from-clause via a "select", for example (e.g. CountQuery).
|
||||
from-clause via a "select".
|
||||
|
||||
This should only be called after any SQL construction methods that
|
||||
might change the tables we need. This means the select columns and
|
||||
|
@ -635,10 +735,13 @@ class BaseQuery(object):
|
|||
order = asc
|
||||
result.append('%s %s' % (field, order))
|
||||
continue
|
||||
col, order = get_order_dir(field, asc)
|
||||
if col in self.aggregate_select:
|
||||
result.append('%s %s' % (col, order))
|
||||
continue
|
||||
if '.' in field:
|
||||
# This came in through an extra(order_by=...) addition. Pass it
|
||||
# on verbatim.
|
||||
col, order = get_order_dir(field, asc)
|
||||
table, col = col.split('.', 1)
|
||||
if (table, col) not in processed_pairs:
|
||||
elt = '%s.%s' % (qn(table), col)
|
||||
|
@ -657,7 +760,6 @@ class BaseQuery(object):
|
|||
ordering_aliases.append(elt)
|
||||
result.append('%s %s' % (elt, order))
|
||||
else:
|
||||
col, order = get_order_dir(field, asc)
|
||||
elt = qn2(col)
|
||||
if distinct and col not in select_aliases:
|
||||
ordering_aliases.append(elt)
|
||||
|
@ -1068,6 +1170,48 @@ class BaseQuery(object):
|
|||
self.fill_related_selections(f.rel.to._meta, alias, cur_depth + 1,
|
||||
used, next, restricted, new_nullable, dupe_set, avoid)
|
||||
|
||||
def add_aggregate(self, aggregate, model, alias, is_summary):
|
||||
"""
|
||||
Adds a single aggregate expression to the Query
|
||||
"""
|
||||
opts = model._meta
|
||||
field_list = aggregate.lookup.split(LOOKUP_SEP)
|
||||
if (len(field_list) == 1 and
|
||||
aggregate.lookup in self.aggregate_select.keys()):
|
||||
# Aggregate is over an annotation
|
||||
field_name = field_list[0]
|
||||
col = field_name
|
||||
source = self.aggregate_select[field_name]
|
||||
elif (len(field_list) > 1 or
|
||||
field_list[0] not in [i.name for i in opts.fields]):
|
||||
field, source, opts, join_list, last, _ = self.setup_joins(
|
||||
field_list, opts, self.get_initial_alias(), False)
|
||||
|
||||
# Process the join chain to see if it can be trimmed
|
||||
_, _, col, _, join_list = self.trim_joins(source, join_list, last, False)
|
||||
|
||||
# If the aggregate references a model or field that requires a join,
|
||||
# those joins must be LEFT OUTER - empty join rows must be returned
|
||||
# in order for zeros to be returned for those aggregates.
|
||||
for column_alias in join_list:
|
||||
self.promote_alias(column_alias, unconditional=True)
|
||||
|
||||
col = (join_list[-1], col)
|
||||
else:
|
||||
# Aggregate references a normal field
|
||||
field_name = field_list[0]
|
||||
source = opts.get_field(field_name)
|
||||
if not (self.group_by and is_summary):
|
||||
# Only use a column alias if this is a
|
||||
# standalone aggregate, or an annotation
|
||||
col = (opts.db_table, source.column)
|
||||
else:
|
||||
col = field_name
|
||||
|
||||
# Add the aggregate to the query
|
||||
alias = truncate_name(alias, self.connection.ops.max_name_length())
|
||||
aggregate.add_to_query(self, alias, col=col, source=source, is_summary=is_summary)
|
||||
|
||||
def add_filter(self, filter_expr, connector=AND, negate=False, trim=False,
|
||||
can_reuse=None, process_extras=True):
|
||||
"""
|
||||
|
@ -1119,6 +1263,11 @@ class BaseQuery(object):
|
|||
elif callable(value):
|
||||
value = value()
|
||||
|
||||
for alias, aggregate in self.aggregate_select.items():
|
||||
if alias == parts[0]:
|
||||
self.having.add((aggregate, lookup_type, value), AND)
|
||||
return
|
||||
|
||||
opts = self.get_meta()
|
||||
alias = self.get_initial_alias()
|
||||
allow_many = trim or not negate
|
||||
|
@ -1131,38 +1280,9 @@ class BaseQuery(object):
|
|||
self.split_exclude(filter_expr, LOOKUP_SEP.join(parts[:e.level]),
|
||||
can_reuse)
|
||||
return
|
||||
final = len(join_list)
|
||||
penultimate = last.pop()
|
||||
if penultimate == final:
|
||||
penultimate = last.pop()
|
||||
if trim and len(join_list) > 1:
|
||||
extra = join_list[penultimate:]
|
||||
join_list = join_list[:penultimate]
|
||||
final = penultimate
|
||||
penultimate = last.pop()
|
||||
col = self.alias_map[extra[0]][LHS_JOIN_COL]
|
||||
for alias in extra:
|
||||
self.unref_alias(alias)
|
||||
else:
|
||||
col = target.column
|
||||
alias = join_list[-1]
|
||||
|
||||
while final > 1:
|
||||
# An optimization: if the final join is against the same column as
|
||||
# we are comparing against, we can go back one step in the join
|
||||
# chain and compare against the lhs of the join instead (and then
|
||||
# repeat the optimization). The result, potentially, involves less
|
||||
# table joins.
|
||||
join = self.alias_map[alias]
|
||||
if col != join[RHS_JOIN_COL]:
|
||||
break
|
||||
self.unref_alias(alias)
|
||||
alias = join[LHS_ALIAS]
|
||||
col = join[LHS_JOIN_COL]
|
||||
join_list = join_list[:-1]
|
||||
final -= 1
|
||||
if final == penultimate:
|
||||
penultimate = last.pop()
|
||||
# Process the join chain to see if it can be trimmed
|
||||
final, penultimate, col, alias, join_list = self.trim_joins(target, join_list, last, trim)
|
||||
|
||||
if (lookup_type == 'isnull' and value is True and not negate and
|
||||
final > 1):
|
||||
|
@ -1313,7 +1433,7 @@ class BaseQuery(object):
|
|||
field, model, direct, m2m = opts.get_field_by_name(f.name)
|
||||
break
|
||||
else:
|
||||
names = opts.get_all_field_names()
|
||||
names = opts.get_all_field_names() + self.aggregate_select.keys()
|
||||
raise FieldError("Cannot resolve keyword %r into field. "
|
||||
"Choices are: %s" % (name, ", ".join(names)))
|
||||
|
||||
|
@ -1462,6 +1582,43 @@ class BaseQuery(object):
|
|||
|
||||
return field, target, opts, joins, last, extra_filters
|
||||
|
||||
def trim_joins(self, target, join_list, last, trim):
|
||||
"""An optimization: if the final join is against the same column as
|
||||
we are comparing against, we can go back one step in a join
|
||||
chain and compare against the LHS of the join instead (and then
|
||||
repeat the optimization). The result, potentially, involves less
|
||||
table joins.
|
||||
|
||||
Returns a tuple
|
||||
"""
|
||||
final = len(join_list)
|
||||
penultimate = last.pop()
|
||||
if penultimate == final:
|
||||
penultimate = last.pop()
|
||||
if trim and len(join_list) > 1:
|
||||
extra = join_list[penultimate:]
|
||||
join_list = join_list[:penultimate]
|
||||
final = penultimate
|
||||
penultimate = last.pop()
|
||||
col = self.alias_map[extra[0]][LHS_JOIN_COL]
|
||||
for alias in extra:
|
||||
self.unref_alias(alias)
|
||||
else:
|
||||
col = target.column
|
||||
alias = join_list[-1]
|
||||
while final > 1:
|
||||
join = self.alias_map[alias]
|
||||
if col != join[RHS_JOIN_COL]:
|
||||
break
|
||||
self.unref_alias(alias)
|
||||
alias = join[LHS_ALIAS]
|
||||
col = join[LHS_JOIN_COL]
|
||||
join_list = join_list[:-1]
|
||||
final -= 1
|
||||
if final == penultimate:
|
||||
penultimate = last.pop()
|
||||
return final, penultimate, col, alias, join_list
|
||||
|
||||
def update_dupe_avoidance(self, opts, col, alias):
|
||||
"""
|
||||
For a column that is one of multiple pointing to the same table, update
|
||||
|
@ -1554,6 +1711,7 @@ class BaseQuery(object):
|
|||
"""
|
||||
alias = self.get_initial_alias()
|
||||
opts = self.get_meta()
|
||||
|
||||
try:
|
||||
for name in field_names:
|
||||
field, target, u2, joins, u3, u4 = self.setup_joins(
|
||||
|
@ -1574,7 +1732,7 @@ class BaseQuery(object):
|
|||
except MultiJoin:
|
||||
raise FieldError("Invalid field name: '%s'" % name)
|
||||
except FieldError:
|
||||
names = opts.get_all_field_names() + self.extra_select.keys()
|
||||
names = opts.get_all_field_names() + self.extra_select.keys() + self.aggregate_select.keys()
|
||||
names.sort()
|
||||
raise FieldError("Cannot resolve keyword %r into field. "
|
||||
"Choices are: %s" % (name, ", ".join(names)))
|
||||
|
@ -1609,38 +1767,52 @@ class BaseQuery(object):
|
|||
if force_empty:
|
||||
self.default_ordering = False
|
||||
|
||||
def set_group_by(self):
|
||||
"""
|
||||
Expands the GROUP BY clause required by the query.
|
||||
|
||||
This will usually be the set of all non-aggregate fields in the
|
||||
return data. If the database backend supports grouping by the
|
||||
primary key, and the query would be equivalent, the optimization
|
||||
will be made automatically.
|
||||
"""
|
||||
if self.connection.features.allows_group_by_pk:
|
||||
if len(self.select) == len(self.model._meta.fields):
|
||||
self.group_by.append('.'.join([self.model._meta.db_table,
|
||||
self.model._meta.pk.column]))
|
||||
return
|
||||
|
||||
for sel in self.select:
|
||||
self.group_by.append(sel)
|
||||
|
||||
def add_count_column(self):
|
||||
"""
|
||||
Converts the query to do count(...) or count(distinct(pk)) in order to
|
||||
get its size.
|
||||
"""
|
||||
# TODO: When group_by support is added, this needs to be adjusted so
|
||||
# that it doesn't totally overwrite the select list.
|
||||
if not self.distinct:
|
||||
if not self.select:
|
||||
select = Count()
|
||||
count = self.aggregates_module.Count('*', is_summary=True)
|
||||
else:
|
||||
assert len(self.select) == 1, \
|
||||
"Cannot add count col with multiple cols in 'select': %r" % self.select
|
||||
select = Count(self.select[0])
|
||||
count = self.aggregates_module.Count(self.select[0])
|
||||
else:
|
||||
opts = self.model._meta
|
||||
if not self.select:
|
||||
select = Count((self.join((None, opts.db_table, None, None)),
|
||||
opts.pk.column), True)
|
||||
count = self.aggregates_module.Count((self.join((None, opts.db_table, None, None)), opts.pk.column),
|
||||
is_summary=True, distinct=True)
|
||||
else:
|
||||
# Because of SQL portability issues, multi-column, distinct
|
||||
# counts need a sub-query -- see get_count() for details.
|
||||
assert len(self.select) == 1, \
|
||||
"Cannot add count col with multiple cols in 'select'."
|
||||
select = Count(self.select[0], True)
|
||||
|
||||
count = self.aggregates_module.Count(self.select[0], distinct=True)
|
||||
# Distinct handling is done in Count(), so don't do it at this
|
||||
# level.
|
||||
self.distinct = False
|
||||
self.select = [select]
|
||||
self.select_fields = [None]
|
||||
self.extra_select = {}
|
||||
self.aggregate_select = {None: count}
|
||||
|
||||
def add_select_related(self, fields):
|
||||
"""
|
||||
|
@ -1758,7 +1930,6 @@ class BaseQuery(object):
|
|||
return empty_iter()
|
||||
else:
|
||||
return
|
||||
|
||||
cursor = self.connection.cursor()
|
||||
cursor.execute(sql, params)
|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@ from django.db.models.sql.query import Query
|
|||
from django.db.models.sql.where import AND, Constraint
|
||||
|
||||
__all__ = ['DeleteQuery', 'UpdateQuery', 'InsertQuery', 'DateQuery',
|
||||
'CountQuery']
|
||||
'AggregateQuery']
|
||||
|
||||
class DeleteQuery(Query):
|
||||
"""
|
||||
|
@ -400,15 +400,25 @@ class DateQuery(Query):
|
|||
self.distinct = True
|
||||
self.order_by = order == 'ASC' and [1] or [-1]
|
||||
|
||||
class CountQuery(Query):
|
||||
class AggregateQuery(Query):
|
||||
"""
|
||||
A CountQuery knows how to take a normal query which would select over
|
||||
multiple distinct columns and turn it into SQL that can be used on a
|
||||
variety of backends (it requires a select in the FROM clause).
|
||||
An AggregateQuery takes another query as a parameter to the FROM
|
||||
clause and only selects the elements in the provided list.
|
||||
"""
|
||||
def get_from_clause(self):
|
||||
result, params = self._query.as_sql()
|
||||
return ['(%s) A1' % result], params
|
||||
def add_subquery(self, query):
|
||||
self.subquery, self.sub_params = query.as_sql(with_col_aliases=True)
|
||||
|
||||
def get_ordering(self):
|
||||
return ()
|
||||
def as_sql(self, quote_func=None):
|
||||
"""
|
||||
Creates the SQL for this query. Returns the SQL string and list of
|
||||
parameters.
|
||||
"""
|
||||
sql = ('SELECT %s FROM (%s) subquery' % (
|
||||
', '.join([
|
||||
aggregate.as_sql()
|
||||
for aggregate in self.aggregate_select.values()
|
||||
]),
|
||||
self.subquery)
|
||||
)
|
||||
params = self.sub_params
|
||||
return (sql, params)
|
||||
|
|
|
@ -14,6 +14,7 @@ from django.test.client import Client
|
|||
from django.utils import simplejson
|
||||
|
||||
normalize_long_ints = lambda s: re.sub(r'(?<![\w])(\d+)L(?![\w])', '\\1', s)
|
||||
normalize_decimals = lambda s: re.sub(r"Decimal\('(\d+(\.\d*)?)'\)", lambda m: "Decimal(\"%s\")" % m.groups()[0], s)
|
||||
|
||||
def to_list(value):
|
||||
"""
|
||||
|
@ -31,7 +32,7 @@ class OutputChecker(doctest.OutputChecker):
|
|||
def check_output(self, want, got, optionflags):
|
||||
"The entry method for doctest output checking. Defers to a sequence of child checkers"
|
||||
checks = (self.check_output_default,
|
||||
self.check_output_long,
|
||||
self.check_output_numeric,
|
||||
self.check_output_xml,
|
||||
self.check_output_json)
|
||||
for check in checks:
|
||||
|
@ -43,13 +44,17 @@ class OutputChecker(doctest.OutputChecker):
|
|||
"The default comparator provided by doctest - not perfect, but good for most purposes"
|
||||
return doctest.OutputChecker.check_output(self, want, got, optionflags)
|
||||
|
||||
def check_output_long(self, want, got, optionflags):
|
||||
"""Doctest does an exact string comparison of output, which means long
|
||||
integers aren't equal to normal integers ("22L" vs. "22"). The
|
||||
following code normalizes long integers so that they equal normal
|
||||
integers.
|
||||
def check_output_numeric(self, want, got, optionflags):
|
||||
"""Doctest does an exact string comparison of output, which means that
|
||||
some numerically equivalent values aren't equal. This check normalizes
|
||||
* long integers (22L) so that they equal normal integers. (22)
|
||||
* Decimals so that they are comparable, regardless of the change
|
||||
made to __repr__ in Python 2.6.
|
||||
"""
|
||||
return normalize_long_ints(want) == normalize_long_ints(got)
|
||||
return doctest.OutputChecker.check_output(self,
|
||||
normalize_decimals(normalize_long_ints(want)),
|
||||
normalize_decimals(normalize_long_ints(got)),
|
||||
optionflags)
|
||||
|
||||
def check_output_xml(self, want, got, optionsflags):
|
||||
"""Tries to do a 'xml-comparision' of want and got. Plain string
|
||||
|
|
|
@ -42,7 +42,7 @@ The model layer
|
|||
* **Models:** :ref:`Model syntax <topics-db-models>` | :ref:`Field types <ref-models-fields>` | :ref:`Meta options <ref-models-options>`
|
||||
* **QuerySets:** :ref:`Executing queries <topics-db-queries>` | :ref:`QuerySet method reference <ref-models-querysets>`
|
||||
* **Model instances:** :ref:`Instance methods <ref-models-instances>` | :ref:`Accessing related objects <ref-models-relations>`
|
||||
* **Advanced:** :ref:`Managers <topics-db-managers>` | :ref:`Raw SQL <topics-db-sql>` | :ref:`Transactions <topics-db-transactions>` | :ref:`Custom fields <howto-custom-model-fields>`
|
||||
* **Advanced:** :ref:`Managers <topics-db-managers>` | :ref:`Raw SQL <topics-db-sql>` | :ref:`Transactions <topics-db-transactions>` | :ref:`Aggregation <topics-db-aggregation>` | :ref:`Custom fields <howto-custom-model-fields>`
|
||||
* **Other:** :ref:`Supported databases <ref-databases>` | :ref:`Legacy databases <howto-legacy-databases>` | :ref:`Providing initial data <howto-initial-data>`
|
||||
|
||||
The template layer
|
||||
|
|
|
@ -158,6 +158,48 @@ In SQL terms, that evaluates to::
|
|||
|
||||
Note the second example is more restrictive.
|
||||
|
||||
``annotate(*args, **kwargs)``
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. versionadded:: 1.1
|
||||
|
||||
Annotates each object in the ``QuerySet`` with the provided list of
|
||||
aggregate values (averages, sums, etc) that have been computed over
|
||||
the objects that are related to the objects in the ``QuerySet``.
|
||||
Each argument to ``annotate()`` is an annotation that will be added
|
||||
to each object in the ``QuerySet`` that is returned.
|
||||
|
||||
The aggregation functions that are provided by Django are described
|
||||
in `Aggregation Functions`_ below.
|
||||
|
||||
Annotations specified using keyword arguments will use the keyword as
|
||||
the alias for the annotation. Anonymous arguments will have an alias
|
||||
generated for them based upon the name of the aggregate function and
|
||||
the model field that is being aggregated.
|
||||
|
||||
For example, if you were manipulating a list of blogs, you may want
|
||||
to determine how many entries have been made in each blog::
|
||||
|
||||
>>> q = Blog.objects.annotate(Count('entry'))
|
||||
# The name of the first blog
|
||||
>>> q[0].name
|
||||
'Blogasaurus'
|
||||
# The number of entries on the first blog
|
||||
>>> q[0].entry__count
|
||||
42
|
||||
|
||||
The ``Blog`` model doesn't define an ``entry_count`` attribute by itself,
|
||||
but by using a keyword argument to specify the aggregate function, you can
|
||||
control the name of the annotation::
|
||||
|
||||
>>> q = Blog.objects.annotate(number_of_entries=Count('entry'))
|
||||
# The number of entries on the first blog, using the name provided
|
||||
>>> q[0].number_of_entries
|
||||
42
|
||||
|
||||
For an in-depth discussion of aggregation, see :ref:`the topic guide on
|
||||
Aggregation <topics-db-aggregation>`.
|
||||
|
||||
``order_by(*fields)``
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|
@ -931,6 +973,38 @@ exist with the given parameters.
|
|||
|
||||
Note ``latest()`` exists purely for convenience and readability.
|
||||
|
||||
``aggregate(*args, **kwargs)``
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. versionadded:: 1.1
|
||||
|
||||
Returns a dictionary of aggregate values (averages, sums, etc) calculated
|
||||
over the ``QuerySet``. Each argument to ``aggregate()`` specifies
|
||||
a value that will be included in the dictionary that is returned.
|
||||
|
||||
The aggregation functions that are provided by Django are described
|
||||
in `Aggregation Functions`_ below.
|
||||
|
||||
Aggregates specified using keyword arguments will use the keyword as
|
||||
the name for the annotation. Anonymous arguments will have an name
|
||||
generated for them based upon the name of the aggregate function and
|
||||
the model field that is being aggregated.
|
||||
|
||||
For example, if you were manipulating blog entries, you may want to know
|
||||
the average number of authors contributing to blog entries::
|
||||
|
||||
>>> q = Blog.objects.aggregate(Count('entry'))
|
||||
{'entry__count': 16}
|
||||
|
||||
By using a keyword argument to specify the aggregate function, you can
|
||||
control the name of the aggregation value that is returned::
|
||||
|
||||
>>> q = Blog.objects.aggregate(number_of_entries=Count('entry'))
|
||||
{'number_of_entries': 2.34}
|
||||
|
||||
For an in-depth discussion of aggregation, see :ref:`the topic guide on
|
||||
Aggregation <topics-db-aggregation>`.
|
||||
|
||||
.. _field-lookups:
|
||||
|
||||
Field lookups
|
||||
|
@ -1326,3 +1400,115 @@ SQL equivalents::
|
|||
|
||||
SELECT ... WHERE title REGEXP '(?i)^(an?|the) +'; -- SQLite
|
||||
|
||||
.. _aggregation-functions:
|
||||
|
||||
Aggregation Functions
|
||||
---------------------
|
||||
|
||||
.. versionadded:: 1.1
|
||||
|
||||
Django provides the following aggregation functions in the
|
||||
``django.db.models`` module.
|
||||
|
||||
``Avg``
|
||||
~~~~~~~
|
||||
|
||||
.. class:: Avg(field)
|
||||
|
||||
Returns the mean value of the given field.
|
||||
|
||||
* Default alias: ``<field>__avg``
|
||||
* Return type: float
|
||||
|
||||
``Count``
|
||||
~~~~~~~~~
|
||||
|
||||
.. class:: Count(field, distinct=False)
|
||||
|
||||
Returns the number of objects that are related through the provided field.
|
||||
|
||||
* Default alias: ``<field>__count``
|
||||
* Return type: integer
|
||||
|
||||
Has one optional argument:
|
||||
|
||||
.. attribute:: distinct
|
||||
|
||||
If distinct=True, the count will only include unique instances. This has
|
||||
the SQL equivalent of ``COUNT(DISTINCT field)``. Default value is ``False``.
|
||||
|
||||
``Max``
|
||||
~~~~~~~
|
||||
|
||||
.. class:: Max(field)
|
||||
|
||||
Returns the maximum value of the given field.
|
||||
|
||||
* Default alias: ``<field>__max``
|
||||
* Return type: same as input field
|
||||
|
||||
``Min``
|
||||
~~~~~~~
|
||||
|
||||
.. class:: Min(field)
|
||||
|
||||
Returns the minimum value of the given field.
|
||||
|
||||
* Default alias: ``<field>__min``
|
||||
* Return type: same as input field
|
||||
|
||||
``StdDev``
|
||||
~~~~~~~~~
|
||||
|
||||
.. class:: StdDev(field, sample=False)
|
||||
|
||||
Returns the standard deviation of the data in the provided field.
|
||||
|
||||
* Default alias: ``<field>__stddev``
|
||||
* Return type: float
|
||||
|
||||
Has one optional argument:
|
||||
|
||||
.. attribute:: sample
|
||||
|
||||
By default, ``StdDev`` returns the population standard deviation. However,
|
||||
if ``sample=True``, the return value will be the sample standard deviation.
|
||||
|
||||
.. admonition:: SQLite
|
||||
|
||||
SQLite doesn't provide ``StdDev`` out of the box. An implementation is
|
||||
available as an extension module for SQLite. Consult the SQlite
|
||||
documentation for instructions on obtaining and installing this extension.
|
||||
|
||||
``Sum``
|
||||
~~~~~~~
|
||||
|
||||
.. class:: Sum(field)
|
||||
|
||||
Computes the sum of all values of the given field.
|
||||
|
||||
* Default alias: ``<field>__sum``
|
||||
* Return type: same as input field
|
||||
|
||||
``Variance``
|
||||
~~~~~~~~~
|
||||
|
||||
.. class:: Variance(field, sample=False)
|
||||
|
||||
Returns the variance of the data in the provided field.
|
||||
|
||||
* Default alias: ``<field>__variance``
|
||||
* Return type: float
|
||||
|
||||
Has one optional argument:
|
||||
|
||||
.. attribute:: sample
|
||||
|
||||
By default, ``Variance`` returns the population variance. However,
|
||||
if ``sample=True``, the return value will be the sample variance.
|
||||
|
||||
.. admonition:: SQLite
|
||||
|
||||
SQLite doesn't provide ``Variance`` out of the box. An implementation is
|
||||
available as an extension module for SQLite. Consult the SQlite
|
||||
documentation for instructions on obtaining and installing this extension.
|
||||
|
|
|
@ -0,0 +1,323 @@
|
|||
.. _topics-db-aggregation:
|
||||
|
||||
=============
|
||||
Aggregation
|
||||
=============
|
||||
|
||||
.. versionadded:: 1.1
|
||||
|
||||
.. currentmodule:: django.db.models
|
||||
|
||||
The topic guide on :ref:`Django's database-abstraction API <topics-db-queries`
|
||||
described the way that you can use Django queries that create,
|
||||
retrieve, update and delete individual objects. However, sometimes you will
|
||||
need to retrieve values that are derived by summarizing or *aggregating* a
|
||||
collection of objects. This topic guide describes the ways that aggregate values
|
||||
can be generated and returned using Django queries.
|
||||
|
||||
Throughout this guide, we'll refer to the following models. These models are
|
||||
used to track the inventory for a series of online bookstores:
|
||||
|
||||
.. _queryset-model-example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class Author(models.Model):
|
||||
name = models.CharField(max_length=100)
|
||||
age = models.IntegerField()
|
||||
friends = models.ManyToManyField('self', blank=True)
|
||||
|
||||
class Publisher(models.Model):
|
||||
name = models.CharField(max_length=300)
|
||||
num_awards = models.IntegerField()
|
||||
|
||||
class Book(models.Model):
|
||||
isbn = models.CharField(max_length=9)
|
||||
name = models.CharField(max_length=300)
|
||||
pages = models.IntegerField()
|
||||
price = models.DecimalField(max_digits=10, decimal_places=2)
|
||||
rating = models.FloatField()
|
||||
authors = models.ManyToManyField(Author)
|
||||
publisher = models.ForeignKey(Publisher)
|
||||
pubdate = models.DateField
|
||||
|
||||
class Store(models.Model):
|
||||
name = models.CharField(max_length=300)
|
||||
books = models.ManyToManyField(Book)
|
||||
|
||||
|
||||
Generating aggregates over a QuerySet
|
||||
=====================================
|
||||
|
||||
Django provides two ways to generate aggregates. The first way is to generate
|
||||
summary values over an entire ``QuerySet``. For example, say you wanted to
|
||||
calculate the average price of all books available for sale. Django's query
|
||||
syntax provides a means for describing the set of all books::
|
||||
|
||||
>>> Book.objects.all()
|
||||
|
||||
What we need is a way to calculate summary values over the objects that
|
||||
belong to this ``QuerySet``. This is done by appending an ``aggregate()``
|
||||
clause onto the ``QuerySet``::
|
||||
|
||||
>>> from django.db.models import Avg
|
||||
>>> Book.objects.all().aggregate(Avg('price'))
|
||||
{'price__avg': 34.35}
|
||||
|
||||
The ``all()`` is redundant in this example, so this could be simplified to::
|
||||
|
||||
>>> Book.objects.aggregate(Avg('price'))
|
||||
{'price__avg': 34.35}
|
||||
|
||||
The argument to the ``aggregate()`` clause describes the aggregate value that
|
||||
we want to compute - in this case, the average of the ``price`` field on the
|
||||
``Book`` model. A list of the aggregate functions that are available can be
|
||||
found in the :ref:`QuerySet reference <aggregation-functions>`.
|
||||
|
||||
``aggregate()`` is a terminal clause for a ``QuerySet`` that, when invoked,
|
||||
returns a dictionary of name-value pairs. The name is an identifier for the
|
||||
aggregate value; the value is the computed aggregate. The name is
|
||||
automatically generated from the name of the field and the aggregate function.
|
||||
If you want to manually specify a name for the aggregate value, you can do so
|
||||
by providing that name when you specify the aggregate clause::
|
||||
|
||||
>>> Book.objects.aggregate(average_price=Avg('price'))
|
||||
{'average_price': 34.35}
|
||||
|
||||
If you want to generate more than one aggregate, you just add another
|
||||
argument to the ``aggregate()`` clause. So, if we also wanted to know
|
||||
the maximum and minimum price of all books, we would issue the query::
|
||||
|
||||
>>> Book.objects.aggregate(Avg('price'), Max('price'), Min('price'))
|
||||
{'price__avg': 34.35, 'price__max': Decimal('81.20'), 'price__min': Decimal('12.99')}
|
||||
|
||||
Generating aggregates for each item in a QuerySet
|
||||
=================================================
|
||||
|
||||
The second way to generate summary values is to generate an independent
|
||||
summary for each object in a ``Queryset``. For example, if you are retrieving
|
||||
a list of books, you may want to know how many authors contributed to
|
||||
each book. Each Book has a many-to-many relationship with the Author; we
|
||||
want to summarize this relationship for each book in the ``QuerySet``.
|
||||
|
||||
Per-object summaries can be generated using the ``annotate()`` clause.
|
||||
When an ``annotate()`` clause is specified, each object in the ``QuerySet``
|
||||
will be annotated with the specified values.
|
||||
|
||||
The syntax for these annotations is identical to that used for the
|
||||
``aggregate()`` clause. Each argument to ``annotate()`` describes and
|
||||
aggregate that is to be calculated. For example, to annotate Books with
|
||||
the number of authors::
|
||||
|
||||
# Build an annotated queryset
|
||||
>>> q = Book.objects.annotate(Count('authors'))
|
||||
# Interrogate the first object in the queryset
|
||||
>>> q[0]
|
||||
<Book: The Definitive Guide to Django>
|
||||
>>> q[0].authors__count
|
||||
2
|
||||
# Interrogate the second object in the queryset
|
||||
>>> q[1]
|
||||
<Book: Practical Django Projects>
|
||||
>>> q[1].authors__count
|
||||
1
|
||||
|
||||
As with ``aggregate()``, the name for the annotation is automatically derived
|
||||
from the name of the aggregate function and the name of the field being
|
||||
aggregated. You can override this default name by providing an alias when you
|
||||
specify the annotation::
|
||||
|
||||
>>> q = Book.objects.annotate(num_authors=Count('authors'))
|
||||
>>> q[0].num_authors
|
||||
2
|
||||
>>> q[1].num_authors
|
||||
1
|
||||
|
||||
Unlike ``aggregate()``, ``annotate()`` is *not* a terminal clause. The output
|
||||
of the ``annotate()`` clause is a ``QuerySet``; this ``QuerySet`` can be
|
||||
modified using any other ``QuerySet`` operation, including ``filter()``,
|
||||
``order_by``, or even additional calls to ``annotate()``.
|
||||
|
||||
Joins and aggregates
|
||||
====================
|
||||
|
||||
So far, we have dealt with aggregates over fields that belong to the
|
||||
model being queries. However, sometimes the value you want to aggregate
|
||||
will belong to a model that is related to the model you are querying.
|
||||
|
||||
When specifying the field to be aggregated in an aggregate functions,
|
||||
Django will allow you to use the same
|
||||
:ref:`double underscore notation <field-lookups-intro>` that is used
|
||||
when referring to related fields in filters. Django will then handle
|
||||
any table joins that are required to retrieve and aggregate the
|
||||
related value.
|
||||
|
||||
For example, to find the price range of books offered in each store,
|
||||
you could use the annotation::
|
||||
|
||||
>>> Store.objects.annotate(min_price=Min('books__price'), max_price=Min('books__price'))
|
||||
|
||||
This tells Django to retrieve the Store model, join (through the
|
||||
many-to-many relationship) with the Book model, and aggregate on the
|
||||
price field of the book model to produce a minimum and maximum value.
|
||||
|
||||
The same rules apply to the ``aggregate()`` clause. If you wanted to
|
||||
know the lowest and highest price of any book that is available for sale
|
||||
in a store, you could use the aggregate::
|
||||
|
||||
>>> Store.objects.aggregate(min_price=Min('books__price'), max_price=Min('books__price'))
|
||||
|
||||
Join chains can be as deep as you required. For example, to extract the
|
||||
age of the youngest author of any book available for sale, you could
|
||||
issue the query::
|
||||
|
||||
>>> Store.objects.aggregate(youngest_age=Min('books__authors__age'))
|
||||
|
||||
Aggregations and other QuerySet clauses
|
||||
=======================================
|
||||
|
||||
``filter()`` and ``exclude()``
|
||||
------------------------------
|
||||
|
||||
Aggregates can also participate in filters. Any ``filter()`` (or
|
||||
``exclude()``) applied to normal model fields will have the effect of
|
||||
constraining the objects that are considered for aggregation.
|
||||
|
||||
When used with an ``annotate()`` clause, a filter has the effect of
|
||||
constraining the objects for which an annotation is calculated. For example,
|
||||
you can generate an annotated list of all books that have a title starting
|
||||
with "Django" using the query::
|
||||
|
||||
>>> Book.objects.filter(name__startswith="Django").annotate(num_authors=Count('authors'))
|
||||
|
||||
When used with an ``aggregate()`` clause, a filter has the effect of
|
||||
constraining the objects over which the aggregate is calculated.
|
||||
For example, you can generate the average price of all books with a
|
||||
title that starts with "Django" using the query::
|
||||
|
||||
>>> Book.objects.filter(name__startswith="Django").aggregate(Avg('price'))
|
||||
|
||||
Filtering on annotations
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Annotated values can also be filtered. The alias for the annotation can be
|
||||
used in ``filter()`` and ``exclude()`` clauses in the same way as any other
|
||||
model field.
|
||||
|
||||
For example, to generate a list of books that have more than one author,
|
||||
you can issue the query::
|
||||
|
||||
>>> Book.objects.annotate(num_authors=Count('authors')).filter(num_authors__gt=1)
|
||||
|
||||
This query generates an annotated result set, and then generates a filter
|
||||
based upon that annotation.
|
||||
|
||||
Order of ``annotate()`` and ``filter()`` clauses
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
When developing a complex query that involves both ``annotate()`` and
|
||||
``filter()`` clauses, particular attention should be paid to the order
|
||||
in which the clauses are applied to the ``QuerySet``.
|
||||
|
||||
When an ``annotate()`` clause is applied to a query, the annotation is
|
||||
computed over the state of the query up to the point where the annotation
|
||||
is requested. The practical implication of this is that ``filter()`` and
|
||||
``annotate()`` are not transitive operations -- that is, there is a
|
||||
difference between the query::
|
||||
|
||||
>>> Publisher.objects.annotate(num_books=Count('book')).filter(book__rating__gt=3.0)
|
||||
|
||||
and the query::
|
||||
|
||||
>>> Publisher.objects.filter(book__rating__gt=3.0).annotate(num_books=Count('book'))
|
||||
|
||||
Both queries will return a list of Publishers that have at least one good
|
||||
book (i.e., a book with a rating exceeding 3.0). However, the annotation in
|
||||
the first query will provide the total number of all books published by the
|
||||
publisher; the second query will only include good books in the annotated
|
||||
count. In the first query, the annotation precedes the filter, so the
|
||||
filter has no effect on the annotation. In the second query, the filter
|
||||
preceeds the annotation, and as a result, the filter constrains the objects
|
||||
considered when calculating the annotation.
|
||||
|
||||
``order_by()``
|
||||
--------------
|
||||
|
||||
Annotations can be used as a basis for ordering. When you
|
||||
define an ``order_by()`` clause, the aggregates you provide can reference
|
||||
any alias defined as part of an ``annotate()`` clause in the query.
|
||||
|
||||
For example, to order a ``QuerySet`` of books by the number of authors
|
||||
that have contributed to the book, you could use the following query::
|
||||
|
||||
>>> Book.objects.annotate(num_authors=Count('authors')).order_by('num_authors')
|
||||
|
||||
``values()``
|
||||
------------
|
||||
|
||||
Ordinarily, annotations are generated on a per-object basis - an annotated
|
||||
``QuerySet`` will return one result for each object in the original
|
||||
``Queryset``. However, when a ``values()`` clause is used to constrain the
|
||||
columns that are returned in the result set, the method for evaluating
|
||||
annotations is slightly different. Instead of returning an annotated result
|
||||
for each result in the original ``QuerySet``, the original results are
|
||||
grouped according to the unique combinations of the fields specified in the
|
||||
``values()`` clause. An annotation is then provided for each unique group;
|
||||
the annotation is computed over all members of the group.
|
||||
|
||||
For example, consider an author query that attempts to find out the average
|
||||
rating of books written by each author:
|
||||
|
||||
>>> Author.objects.annotate(average_rating=Avg('book_rating'))
|
||||
|
||||
This will return one result for each author in the database, annotate with
|
||||
their average book rating.
|
||||
|
||||
However, the result will be slightly different if you use a ``values()`` clause::
|
||||
|
||||
>>> Author.objects.values('name').annotate(average_rating=Avg('book_rating'))
|
||||
|
||||
In this example, the authors will be grouped by name, so you will only get
|
||||
an annotated result for each *unique* author name. This means if you have
|
||||
two authors with the same name, their results will be merged into a single
|
||||
result in the output of the query; the average will be computed as the
|
||||
average over the books written by both authors.
|
||||
|
||||
The annotation name will be added to the fields returned
|
||||
as part of the ``ValuesQuerySet``.
|
||||
|
||||
Order of ``annotate()`` and ``filter()`` clauses
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
As with the ``filter()`` clause, the order in which ``annotate()`` and
|
||||
``values()`` clauses are applied to a query is significant. If the
|
||||
``values()`` clause precedes the ``annotate()``, the annotation will be
|
||||
computed using the grouping described by the ``values()`` clause.
|
||||
|
||||
However, if the ``annotate()`` clause precedes the ``values()`` clause,
|
||||
the annotations will be generated over the entire query set. In this case,
|
||||
the ``values()`` clause only constrains the fields that are generated on
|
||||
output.
|
||||
|
||||
For example, if we reverse the order of the ``values()`` and ``annotate()``
|
||||
clause from our previous example::
|
||||
|
||||
>>> Author.objects.annotate(average_rating=Avg('book_rating')).values('name')
|
||||
|
||||
This will now yield one unique result for each author; however, only
|
||||
the author's name and the ``average_rating`` annotation will be returned
|
||||
in the output data.
|
||||
|
||||
Aggregating annotations
|
||||
-----------------------
|
||||
|
||||
You can also generate an aggregate on the result of an annotation. When you
|
||||
define an ``aggregate()`` clause, the aggregates you provide can reference
|
||||
any alias defined as part of an ``annotate()`` clause in the query.
|
||||
|
||||
For example, if you wanted to calculate the average number of authors per
|
||||
book you first annotate the set of books with the author count, then
|
||||
aggregate that author count, referencing the annotation field::
|
||||
|
||||
>>> Book.objects.annotate(num_authors=Count('authors')).aggregate(Avg('num_authors'))
|
||||
{'num_authors__avg': 1.66}
|
|
@ -12,6 +12,7 @@ model maps to a single database table.
|
|||
|
||||
models
|
||||
queries
|
||||
aggregation
|
||||
managers
|
||||
sql
|
||||
transactions
|
||||
|
|
|
@ -0,0 +1,229 @@
|
|||
[
|
||||
{
|
||||
"pk": 1,
|
||||
"model": "aggregation.publisher",
|
||||
"fields": {
|
||||
"name": "Apress",
|
||||
"num_awards": 3
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 2,
|
||||
"model": "aggregation.publisher",
|
||||
"fields": {
|
||||
"name": "Sams",
|
||||
"num_awards": 1
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 3,
|
||||
"model": "aggregation.publisher",
|
||||
"fields": {
|
||||
"name": "Prentice Hall",
|
||||
"num_awards": 7
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 4,
|
||||
"model": "aggregation.publisher",
|
||||
"fields": {
|
||||
"name": "Morgan Kaufmann",
|
||||
"num_awards": 9
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 1,
|
||||
"model": "aggregation.book",
|
||||
"fields": {
|
||||
"publisher": 1,
|
||||
"isbn": "159059725",
|
||||
"name": "The Definitive Guide to Django: Web Development Done Right",
|
||||
"price": "30.00",
|
||||
"rating": 4.5,
|
||||
"authors": [1, 2],
|
||||
"pages": 447,
|
||||
"pubdate": "2007-12-6"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 2,
|
||||
"model": "aggregation.book",
|
||||
"fields": {
|
||||
"publisher": 2,
|
||||
"isbn": "067232959",
|
||||
"name": "Sams Teach Yourself Django in 24 Hours",
|
||||
"price": "23.09",
|
||||
"rating": 3.0,
|
||||
"authors": [3],
|
||||
"pages": 528,
|
||||
"pubdate": "2008-3-3"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 3,
|
||||
"model": "aggregation.book",
|
||||
"fields": {
|
||||
"publisher": 1,
|
||||
"isbn": "159059996",
|
||||
"name": "Practical Django Projects",
|
||||
"price": "29.69",
|
||||
"rating": 4.0,
|
||||
"authors": [4],
|
||||
"pages": 300,
|
||||
"pubdate": "2008-6-23"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 4,
|
||||
"model": "aggregation.book",
|
||||
"fields": {
|
||||
"publisher": 3,
|
||||
"isbn": "013235613",
|
||||
"name": "Python Web Development with Django",
|
||||
"price": "29.69",
|
||||
"rating": 4.0,
|
||||
"authors": [5, 6, 7],
|
||||
"pages": 350,
|
||||
"pubdate": "2008-11-3"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 5,
|
||||
"model": "aggregation.book",
|
||||
"fields": {
|
||||
"publisher": 3,
|
||||
"isbn": "013790395",
|
||||
"name": "Artificial Intelligence: A Modern Approach",
|
||||
"price": "82.80",
|
||||
"rating": 4.0,
|
||||
"authors": [8, 9],
|
||||
"pages": 1132,
|
||||
"pubdate": "1995-1-15"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 6,
|
||||
"model": "aggregation.book",
|
||||
"fields": {
|
||||
"publisher": 4,
|
||||
"isbn": "155860191",
|
||||
"name": "Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp",
|
||||
"price": "75.00",
|
||||
"rating": 5.0,
|
||||
"authors": [8],
|
||||
"pages": 946,
|
||||
"pubdate": "1991-10-15"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 1,
|
||||
"model": "aggregation.store",
|
||||
"fields": {
|
||||
"books": [1, 2, 3, 4, 5, 6],
|
||||
"name": "Amazon.com",
|
||||
"original_opening": "1994-4-23 9:17:42",
|
||||
"friday_night_closing": "23:59:59"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 2,
|
||||
"model": "aggregation.store",
|
||||
"fields": {
|
||||
"books": [1, 3, 5, 6],
|
||||
"name": "Books.com",
|
||||
"original_opening": "2001-3-15 11:23:37",
|
||||
"friday_night_closing": "23:59:59"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 3,
|
||||
"model": "aggregation.store",
|
||||
"fields": {
|
||||
"books": [3, 4, 6],
|
||||
"name": "Mamma and Pappa's Books",
|
||||
"original_opening": "1945-4-25 16:24:14",
|
||||
"friday_night_closing": "21:30:00"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 1,
|
||||
"model": "aggregation.author",
|
||||
"fields": {
|
||||
"age": 34,
|
||||
"friends": [2, 4],
|
||||
"name": "Adrian Holovaty"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 2,
|
||||
"model": "aggregation.author",
|
||||
"fields": {
|
||||
"age": 35,
|
||||
"friends": [1, 7],
|
||||
"name": "Jacob Kaplan-Moss"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 3,
|
||||
"model": "aggregation.author",
|
||||
"fields": {
|
||||
"age": 45,
|
||||
"friends": [],
|
||||
"name": "Brad Dayley"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 4,
|
||||
"model": "aggregation.author",
|
||||
"fields": {
|
||||
"age": 29,
|
||||
"friends": [1],
|
||||
"name": "James Bennett"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 5,
|
||||
"model": "aggregation.author",
|
||||
"fields": {
|
||||
"age": 37,
|
||||
"friends": [6, 7],
|
||||
"name": "Jeffrey Forcier "
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 6,
|
||||
"model": "aggregation.author",
|
||||
"fields": {
|
||||
"age": 29,
|
||||
"friends": [5, 7],
|
||||
"name": "Paul Bissex"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 7,
|
||||
"model": "aggregation.author",
|
||||
"fields": {
|
||||
"age": 25,
|
||||
"friends": [2, 5, 6],
|
||||
"name": "Wesley J. Chun"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 8,
|
||||
"model": "aggregation.author",
|
||||
"fields": {
|
||||
"age": 57,
|
||||
"friends": [9],
|
||||
"name": "Peter Norvig"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 9,
|
||||
"model": "aggregation.author",
|
||||
"fields": {
|
||||
"age": 46,
|
||||
"friends": [8],
|
||||
"name": "Stuart Russell"
|
||||
}
|
||||
}
|
||||
]
|
|
@ -0,0 +1,379 @@
|
|||
# coding: utf-8
|
||||
from django.db import models
|
||||
|
||||
try:
|
||||
sorted
|
||||
except NameError:
|
||||
from django.utils.itercompat import sorted # For Python 2.3
|
||||
|
||||
class Author(models.Model):
|
||||
name = models.CharField(max_length=100)
|
||||
age = models.IntegerField()
|
||||
friends = models.ManyToManyField('self', blank=True)
|
||||
|
||||
def __unicode__(self):
|
||||
return self.name
|
||||
|
||||
class Publisher(models.Model):
|
||||
name = models.CharField(max_length=300)
|
||||
num_awards = models.IntegerField()
|
||||
|
||||
def __unicode__(self):
|
||||
return self.name
|
||||
|
||||
class Book(models.Model):
|
||||
isbn = models.CharField(max_length=9)
|
||||
name = models.CharField(max_length=300)
|
||||
pages = models.IntegerField()
|
||||
rating = models.FloatField()
|
||||
price = models.DecimalField(decimal_places=2, max_digits=6)
|
||||
authors = models.ManyToManyField(Author)
|
||||
publisher = models.ForeignKey(Publisher)
|
||||
pubdate = models.DateField()
|
||||
|
||||
def __unicode__(self):
|
||||
return self.name
|
||||
|
||||
class Store(models.Model):
|
||||
name = models.CharField(max_length=300)
|
||||
books = models.ManyToManyField(Book)
|
||||
original_opening = models.DateTimeField()
|
||||
friday_night_closing = models.TimeField()
|
||||
|
||||
def __unicode__(self):
|
||||
return self.name
|
||||
|
||||
class Entries(models.Model):
|
||||
EntryID = models.AutoField(primary_key=True, db_column='Entry ID')
|
||||
Entry = models.CharField(unique=True, max_length=50)
|
||||
Exclude = models.BooleanField()
|
||||
|
||||
class Clues(models.Model):
|
||||
ID = models.AutoField(primary_key=True)
|
||||
EntryID = models.ForeignKey(Entries, verbose_name='Entry', db_column = 'Entry ID')
|
||||
Clue = models.CharField(max_length=150)
|
||||
|
||||
# Tests on 'aggergate'
|
||||
# Different backends and numbers.
|
||||
__test__ = {'API_TESTS': """
|
||||
>>> from django.core import management
|
||||
>>> try:
|
||||
... from decimal import Decimal
|
||||
... except:
|
||||
... from django.utils._decimal import Decimal
|
||||
>>> from datetime import date
|
||||
|
||||
# Reset the database representation of this app.
|
||||
# This will return the database to a clean initial state.
|
||||
>>> management.call_command('flush', verbosity=0, interactive=False)
|
||||
|
||||
# Empty Call - request nothing, get nothing.
|
||||
>>> Author.objects.all().aggregate()
|
||||
{}
|
||||
|
||||
>>> from django.db.models import Avg, Sum, Count, Max, Min
|
||||
|
||||
# Single model aggregation
|
||||
#
|
||||
|
||||
# Single aggregate
|
||||
# Average age of Authors
|
||||
>>> Author.objects.all().aggregate(Avg('age'))
|
||||
{'age__avg': 37.4...}
|
||||
|
||||
# Multiple aggregates
|
||||
# Average and Sum of Author ages
|
||||
>>> Author.objects.all().aggregate(Sum('age'), Avg('age'))
|
||||
{'age__sum': 337, 'age__avg': 37.4...}
|
||||
|
||||
# Aggreates interact with filters, and only
|
||||
# generate aggregate values for the filtered values
|
||||
# Sum of the age of those older than 29 years old
|
||||
>>> Author.objects.all().filter(age__gt=29).aggregate(Sum('age'))
|
||||
{'age__sum': 254}
|
||||
|
||||
# Depth-1 Joins
|
||||
#
|
||||
|
||||
# On Relationships with self
|
||||
# Average age of the friends of each author
|
||||
>>> Author.objects.all().aggregate(Avg('friends__age'))
|
||||
{'friends__age__avg': 34.07...}
|
||||
|
||||
# On ManyToMany Relationships
|
||||
#
|
||||
|
||||
# Forward
|
||||
# Average age of the Authors of Books with a rating of less than 4.5
|
||||
>>> Book.objects.all().filter(rating__lt=4.5).aggregate(Avg('authors__age'))
|
||||
{'authors__age__avg': 38.2...}
|
||||
|
||||
# Backward
|
||||
# Average rating of the Books whose Author's name contains the letter 'a'
|
||||
>>> Author.objects.all().filter(name__contains='a').aggregate(Avg('book__rating'))
|
||||
{'book__rating__avg': 4.0}
|
||||
|
||||
# On OneToMany Relationships
|
||||
#
|
||||
|
||||
# Forward
|
||||
# Sum of the number of awards of each Book's Publisher
|
||||
>>> Book.objects.all().aggregate(Sum('publisher__num_awards'))
|
||||
{'publisher__num_awards__sum': 30}
|
||||
|
||||
# Backward
|
||||
# Sum of the price of every Book that has a Publisher
|
||||
>>> Publisher.objects.all().aggregate(Sum('book__price'))
|
||||
{'book__price__sum': Decimal("270.27")}
|
||||
|
||||
# Multiple Joins
|
||||
#
|
||||
|
||||
# Forward
|
||||
>>> Store.objects.all().aggregate(Max('books__authors__age'))
|
||||
{'books__authors__age__max': 57}
|
||||
|
||||
# Backward
|
||||
# Note that the very long default alias may be truncated
|
||||
>>> Author.objects.all().aggregate(Min('book__publisher__num_awards'))
|
||||
{'book__publisher__num_award...': 1}
|
||||
|
||||
# Aggregate outputs can also be aliased.
|
||||
|
||||
# Average amazon.com Book rating
|
||||
>>> Store.objects.filter(name='Amazon.com').aggregate(amazon_mean=Avg('books__rating'))
|
||||
{'amazon_mean': 4.08...}
|
||||
|
||||
# Tests on annotate()
|
||||
|
||||
# An empty annotate call does nothing but return the same QuerySet
|
||||
>>> Book.objects.all().annotate().order_by('pk')
|
||||
[<Book: The Definitive Guide to Django: Web Development Done Right>, <Book: Sams Teach Yourself Django in 24 Hours>, <Book: Practical Django Projects>, <Book: Python Web Development with Django>, <Book: Artificial Intelligence: A Modern Approach>, <Book: Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp>]
|
||||
|
||||
# Annotate inserts the alias into the model object with the aggregated result
|
||||
>>> books = Book.objects.all().annotate(mean_age=Avg('authors__age'))
|
||||
>>> books.get(pk=1).name
|
||||
u'The Definitive Guide to Django: Web Development Done Right'
|
||||
|
||||
>>> books.get(pk=1).mean_age
|
||||
34.5
|
||||
|
||||
# On ManyToMany Relationships
|
||||
|
||||
# Forward
|
||||
# Average age of the Authors of each book with a rating less than 4.5
|
||||
>>> books = Book.objects.all().filter(rating__lt=4.5).annotate(Avg('authors__age'))
|
||||
>>> sorted([(b.name, b.authors__age__avg) for b in books])
|
||||
[(u'Artificial Intelligence: A Modern Approach', 51.5), (u'Practical Django Projects', 29.0), (u'Python Web Development with Django', 30.3...), (u'Sams Teach Yourself Django in 24 Hours', 45.0)]
|
||||
|
||||
# Count the number of authors of each book
|
||||
>>> books = Book.objects.annotate(num_authors=Count('authors'))
|
||||
>>> sorted([(b.name, b.num_authors) for b in books])
|
||||
[(u'Artificial Intelligence: A Modern Approach', 2), (u'Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp', 1), (u'Practical Django Projects', 1), (u'Python Web Development with Django', 3), (u'Sams Teach Yourself Django in 24 Hours', 1), (u'The Definitive Guide to Django: Web Development Done Right', 2)]
|
||||
|
||||
# Backward
|
||||
# Average rating of the Books whose Author's names contains the letter 'a'
|
||||
>>> authors = Author.objects.all().filter(name__contains='a').annotate(Avg('book__rating'))
|
||||
>>> sorted([(a.name, a.book__rating__avg) for a in authors])
|
||||
[(u'Adrian Holovaty', 4.5), (u'Brad Dayley', 3.0), (u'Jacob Kaplan-Moss', 4.5), (u'James Bennett', 4.0), (u'Paul Bissex', 4.0), (u'Stuart Russell', 4.0)]
|
||||
|
||||
# Count the number of books written by each author
|
||||
>>> authors = Author.objects.annotate(num_books=Count('book'))
|
||||
>>> sorted([(a.name, a.num_books) for a in authors])
|
||||
[(u'Adrian Holovaty', 1), (u'Brad Dayley', 1), (u'Jacob Kaplan-Moss', 1), (u'James Bennett', 1), (u'Jeffrey Forcier ', 1), (u'Paul Bissex', 1), (u'Peter Norvig', 2), (u'Stuart Russell', 1), (u'Wesley J. Chun', 1)]
|
||||
|
||||
# On OneToMany Relationships
|
||||
|
||||
# Forward
|
||||
# Annotate each book with the number of awards of each Book's Publisher
|
||||
>>> books = Book.objects.all().annotate(Sum('publisher__num_awards'))
|
||||
>>> sorted([(b.name, b.publisher__num_awards__sum) for b in books])
|
||||
[(u'Artificial Intelligence: A Modern Approach', 7), (u'Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp', 9), (u'Practical Django Projects', 3), (u'Python Web Development with Django', 7), (u'Sams Teach Yourself Django in 24 Hours', 1), (u'The Definitive Guide to Django: Web Development Done Right', 3)]
|
||||
|
||||
# Backward
|
||||
# Annotate each publisher with the sum of the price of all books sold
|
||||
>>> publishers = Publisher.objects.all().annotate(Sum('book__price'))
|
||||
>>> sorted([(p.name, p.book__price__sum) for p in publishers])
|
||||
[(u'Apress', Decimal("59.69")), (u'Morgan Kaufmann', Decimal("75.00")), (u'Prentice Hall', Decimal("112.49")), (u'Sams', Decimal("23.09"))]
|
||||
|
||||
# Calls to values() are not commutative over annotate().
|
||||
|
||||
# Calling values on a queryset that has annotations returns the output
|
||||
# as a dictionary
|
||||
>>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values()
|
||||
[{'rating': 4.5, 'isbn': u'159059725', 'name': u'The Definitive Guide to Django: Web Development Done Right', 'pubdate': datetime.date(2007, 12, 6), 'price': Decimal("30..."), 'id': 1, 'publisher_id': 1, 'pages': 447, 'mean_age': 34.5}]
|
||||
|
||||
>>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values('pk', 'isbn', 'mean_age')
|
||||
[{'pk': 1, 'isbn': u'159059725', 'mean_age': 34.5}]
|
||||
|
||||
# Calling it with paramters reduces the output but does not remove the
|
||||
# annotation.
|
||||
>>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values('name')
|
||||
[{'name': u'The Definitive Guide to Django: Web Development Done Right', 'mean_age': 34.5}]
|
||||
|
||||
# An empty values() call before annotating has the same effect as an
|
||||
# empty values() call after annotating
|
||||
>>> Book.objects.filter(pk=1).values().annotate(mean_age=Avg('authors__age'))
|
||||
[{'rating': 4.5, 'isbn': u'159059725', 'name': u'The Definitive Guide to Django: Web Development Done Right', 'pubdate': datetime.date(2007, 12, 6), 'price': Decimal("30..."), 'id': 1, 'publisher_id': 1, 'pages': 447, 'mean_age': 34.5}]
|
||||
|
||||
# Calling annotate() on a ValuesQuerySet annotates over the groups of
|
||||
# fields to be selected by the ValuesQuerySet.
|
||||
|
||||
# Note that an extra parameter is added to each dictionary. This
|
||||
# parameter is a queryset representing the objects that have been
|
||||
# grouped to generate the annotation
|
||||
|
||||
>>> Book.objects.all().values('rating').annotate(n_authors=Count('authors__id'), mean_age=Avg('authors__age')).order_by('rating')
|
||||
[{'rating': 3.0, 'n_authors': 1, 'mean_age': 45.0}, {'rating': 4.0, 'n_authors': 6, 'mean_age': 37.1...}, {'rating': 4.5, 'n_authors': 2, 'mean_age': 34.5}, {'rating': 5.0, 'n_authors': 1, 'mean_age': 57.0}]
|
||||
|
||||
# If a join doesn't match any objects, an aggregate returns None
|
||||
>>> authors = Author.objects.all().annotate(Avg('friends__age')).order_by('id')
|
||||
>>> len(authors)
|
||||
9
|
||||
>>> sorted([(a.name, a.friends__age__avg) for a in authors])
|
||||
[(u'Adrian Holovaty', 32.0), (u'Brad Dayley', None), (u'Jacob Kaplan-Moss', 29.5), (u'James Bennett', 34.0), (u'Jeffrey Forcier ', 27.0), (u'Paul Bissex', 31.0), (u'Peter Norvig', 46.0), (u'Stuart Russell', 57.0), (u'Wesley J. Chun', 33.6...)]
|
||||
|
||||
|
||||
# The Count aggregation function allows an extra parameter: distinct.
|
||||
# This restricts the count results to unique items
|
||||
>>> Book.objects.all().aggregate(Count('rating'))
|
||||
{'rating__count': 6}
|
||||
|
||||
>>> Book.objects.all().aggregate(Count('rating', distinct=True))
|
||||
{'rating__count': 4}
|
||||
|
||||
# Retreiving the grouped objects
|
||||
|
||||
# When using Count you can also omit the primary key and refer only to
|
||||
# the related field name if you want to count all the related objects
|
||||
# and not a specific column
|
||||
>>> explicit = list(Author.objects.annotate(Count('book__id')))
|
||||
>>> implicit = list(Author.objects.annotate(Count('book')))
|
||||
>>> explicit == implicit
|
||||
True
|
||||
|
||||
# Ordering is allowed on aggregates
|
||||
>>> Book.objects.values('rating').annotate(oldest=Max('authors__age')).order_by('oldest', 'rating')
|
||||
[{'rating': 4.5, 'oldest': 35}, {'rating': 3.0, 'oldest': 45}, {'rating': 4.0, 'oldest': 57}, {'rating': 5.0, 'oldest': 57}]
|
||||
|
||||
>>> Book.objects.values('rating').annotate(oldest=Max('authors__age')).order_by('-oldest', '-rating')
|
||||
[{'rating': 5.0, 'oldest': 57}, {'rating': 4.0, 'oldest': 57}, {'rating': 3.0, 'oldest': 45}, {'rating': 4.5, 'oldest': 35}]
|
||||
|
||||
# It is possible to aggregate over anotated values
|
||||
>>> Book.objects.all().annotate(num_authors=Count('authors__id')).aggregate(Avg('num_authors'))
|
||||
{'num_authors__avg': 1.66...}
|
||||
|
||||
# You can filter the results based on the aggregation alias.
|
||||
|
||||
# Lets add a publisher to test the different possibilities for filtering
|
||||
>>> p = Publisher(name='Expensive Publisher', num_awards=0)
|
||||
>>> p.save()
|
||||
>>> Book(name='ExpensiveBook1', pages=1, isbn='111', rating=3.5, price=Decimal("1000"), publisher=p, pubdate=date(2008,12,1)).save()
|
||||
>>> Book(name='ExpensiveBook2', pages=1, isbn='222', rating=4.0, price=Decimal("1000"), publisher=p, pubdate=date(2008,12,2)).save()
|
||||
>>> Book(name='ExpensiveBook3', pages=1, isbn='333', rating=4.5, price=Decimal("35"), publisher=p, pubdate=date(2008,12,3)).save()
|
||||
|
||||
# Publishers that have:
|
||||
|
||||
# (i) more than one book
|
||||
>>> Publisher.objects.annotate(num_books=Count('book__id')).filter(num_books__gt=1).order_by('pk')
|
||||
[<Publisher: Apress>, <Publisher: Prentice Hall>, <Publisher: Expensive Publisher>]
|
||||
|
||||
# (ii) a book that cost less than 40
|
||||
>>> Publisher.objects.filter(book__price__lt=Decimal("40.0")).order_by('pk')
|
||||
[<Publisher: Apress>, <Publisher: Apress>, <Publisher: Sams>, <Publisher: Prentice Hall>, <Publisher: Expensive Publisher>]
|
||||
|
||||
# (iii) more than one book and (at least) a book that cost less than 40
|
||||
>>> Publisher.objects.annotate(num_books=Count('book__id')).filter(num_books__gt=1, book__price__lt=Decimal("40.0")).order_by('pk')
|
||||
[<Publisher: Apress>, <Publisher: Prentice Hall>, <Publisher: Expensive Publisher>]
|
||||
|
||||
# (iv) more than one book that costs less than $40
|
||||
>>> Publisher.objects.filter(book__price__lt=Decimal("40.0")).annotate(num_books=Count('book__id')).filter(num_books__gt=1).order_by('pk')
|
||||
[<Publisher: Apress>]
|
||||
|
||||
# Now a bit of testing on the different lookup types
|
||||
#
|
||||
|
||||
>>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__range=[1, 3]).order_by('pk')
|
||||
[<Publisher: Apress>, <Publisher: Sams>, <Publisher: Prentice Hall>, <Publisher: Morgan Kaufmann>, <Publisher: Expensive Publisher>]
|
||||
|
||||
>>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__range=[1, 2]).order_by('pk')
|
||||
[<Publisher: Apress>, <Publisher: Sams>, <Publisher: Prentice Hall>, <Publisher: Morgan Kaufmann>]
|
||||
|
||||
>>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__in=[1, 3]).order_by('pk')
|
||||
[<Publisher: Sams>, <Publisher: Morgan Kaufmann>, <Publisher: Expensive Publisher>]
|
||||
|
||||
>>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__isnull=True)
|
||||
[]
|
||||
|
||||
>>> p.delete()
|
||||
|
||||
# Does Author X have any friends? (or better, how many friends does author X have)
|
||||
>> Author.objects.filter(pk=1).aggregate(Count('friends__id'))
|
||||
{'friends__id__count': 2.0}
|
||||
|
||||
# Give me a list of all Books with more than 1 authors
|
||||
>>> Book.objects.all().annotate(num_authors=Count('authors__name')).filter(num_authors__ge=2).order_by('pk')
|
||||
[<Book: The Definitive Guide to Django: Web Development Done Right>, <Book: Artificial Intelligence: A Modern Approach>]
|
||||
|
||||
# Give me a list of all Authors that have no friends
|
||||
>>> Author.objects.all().annotate(num_friends=Count('friends__id', distinct=True)).filter(num_friends=0).order_by('pk')
|
||||
[<Author: Brad Dayley>]
|
||||
|
||||
# Give me a list of all publishers that have published more than 1 books
|
||||
>>> Publisher.objects.all().annotate(num_books=Count('book__id')).filter(num_books__gt=1).order_by('pk')
|
||||
[<Publisher: Apress>, <Publisher: Prentice Hall>]
|
||||
|
||||
# Give me a list of all publishers that have published more than 1 books that cost less than 40
|
||||
>>> Publisher.objects.all().filter(book__price__lt=Decimal("40.0")).annotate(num_books=Count('book__id')).filter(num_books__gt=1)
|
||||
[<Publisher: Apress>]
|
||||
|
||||
# Give me a list of all Books that were written by X and one other author.
|
||||
>>> Book.objects.all().annotate(num_authors=Count('authors__id')).filter(authors__name__contains='Norvig', num_authors__gt=1)
|
||||
[<Book: Artificial Intelligence: A Modern Approach>]
|
||||
|
||||
# Give me the average rating of all Books that were written by X and one other author.
|
||||
#(Aggregate over objects discovered using membership of the m2m set)
|
||||
|
||||
# Adding an existing author to another book to test it the right way
|
||||
>>> a = Author.objects.get(name__contains='Norvig')
|
||||
>>> b = Book.objects.get(name__contains='Done Right')
|
||||
>>> b.authors.add(a)
|
||||
>>> b.save()
|
||||
|
||||
# This should do it
|
||||
>>> Book.objects.all().annotate(num_authors=Count('authors__id')).filter(authors__name__contains='Norvig', num_authors__gt=1).aggregate(Avg('rating'))
|
||||
{'rating__avg': 4.25}
|
||||
>>> b.authors.remove(a)
|
||||
|
||||
# Give me a list of all Authors that have published a book with at least one other person
|
||||
# (Filters over a count generated on a related object)
|
||||
#
|
||||
# Cheating: [a for a in Author.objects.all().annotate(num_coleagues=Count('book__authors__id'), num_books=Count('book__id', distinct=True)) if a.num_coleagues - a.num_books > 0]
|
||||
# F-Syntax is required. Will be fixed after F objects are available
|
||||
|
||||
# Tests on fields with non-default table and column names.
|
||||
>>> Clues.objects.values('EntryID__Entry').annotate(Appearances=Count('EntryID'), Distinct_Clues=Count('Clue', distinct=True))
|
||||
[]
|
||||
|
||||
# Aggregates also work on dates, times and datetimes
|
||||
>>> Publisher.objects.annotate(earliest_book=Min('book__pubdate')).order_by('earliest_book').values()
|
||||
[{'earliest_book': datetime.date(1991, 10, 15), 'num_awards': 9, 'id': 4, 'name': u'Morgan Kaufmann'}, {'earliest_book': datetime.date(1995, 1, 15), 'num_awards': 7, 'id': 3, 'name': u'Prentice Hall'}, {'earliest_book': datetime.date(2007, 12, 6), 'num_awards': 3, 'id': 1, 'name': u'Apress'}, {'earliest_book': datetime.date(2008, 3, 3), 'num_awards': 1, 'id': 2, 'name': u'Sams'}]
|
||||
|
||||
>>> Store.objects.aggregate(Max('friday_night_closing'), Min("original_opening"))
|
||||
{'friday_night_closing__max': datetime.time(23, 59, 59), 'original_opening__min': datetime.datetime(1945, 4, 25, 16, 24, 14)}
|
||||
|
||||
# values_list() can also be used
|
||||
|
||||
>>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('pk', 'isbn', 'mean_age')
|
||||
[(1, u'159059725', 34.5)]
|
||||
|
||||
>>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('isbn')
|
||||
[(u'159059725',)]
|
||||
|
||||
>>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('mean_age')
|
||||
[(34.5,)]
|
||||
|
||||
>>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('mean_age', flat=True)
|
||||
[34.5]
|
||||
|
||||
"""}
|
|
@ -0,0 +1,229 @@
|
|||
[
|
||||
{
|
||||
"pk": 1,
|
||||
"model": "aggregation_regress.publisher",
|
||||
"fields": {
|
||||
"name": "Apress",
|
||||
"num_awards": 3
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 2,
|
||||
"model": "aggregation_regress.publisher",
|
||||
"fields": {
|
||||
"name": "Sams",
|
||||
"num_awards": 1
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 3,
|
||||
"model": "aggregation_regress.publisher",
|
||||
"fields": {
|
||||
"name": "Prentice Hall",
|
||||
"num_awards": 7
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 4,
|
||||
"model": "aggregation_regress.publisher",
|
||||
"fields": {
|
||||
"name": "Morgan Kaufmann",
|
||||
"num_awards": 9
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 1,
|
||||
"model": "aggregation_regress.book",
|
||||
"fields": {
|
||||
"publisher": 1,
|
||||
"isbn": "159059725",
|
||||
"name": "The Definitive Guide to Django: Web Development Done Right",
|
||||
"price": "30.00",
|
||||
"rating": 4.5,
|
||||
"authors": [1, 2],
|
||||
"pages": 447,
|
||||
"pubdate": "2007-12-6"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 2,
|
||||
"model": "aggregation_regress.book",
|
||||
"fields": {
|
||||
"publisher": 2,
|
||||
"isbn": "067232959",
|
||||
"name": "Sams Teach Yourself Django in 24 Hours",
|
||||
"price": "23.09",
|
||||
"rating": 3.0,
|
||||
"authors": [3],
|
||||
"pages": 528,
|
||||
"pubdate": "2008-3-3"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 3,
|
||||
"model": "aggregation_regress.book",
|
||||
"fields": {
|
||||
"publisher": 1,
|
||||
"isbn": "159059996",
|
||||
"name": "Practical Django Projects",
|
||||
"price": "29.69",
|
||||
"rating": 4.0,
|
||||
"authors": [4],
|
||||
"pages": 300,
|
||||
"pubdate": "2008-6-23"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 4,
|
||||
"model": "aggregation_regress.book",
|
||||
"fields": {
|
||||
"publisher": 3,
|
||||
"isbn": "013235613",
|
||||
"name": "Python Web Development with Django",
|
||||
"price": "29.69",
|
||||
"rating": 4.0,
|
||||
"authors": [5, 6, 7],
|
||||
"pages": 350,
|
||||
"pubdate": "2008-11-3"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 5,
|
||||
"model": "aggregation_regress.book",
|
||||
"fields": {
|
||||
"publisher": 3,
|
||||
"isbn": "013790395",
|
||||
"name": "Artificial Intelligence: A Modern Approach",
|
||||
"price": "82.80",
|
||||
"rating": 4.0,
|
||||
"authors": [8, 9],
|
||||
"pages": 1132,
|
||||
"pubdate": "1995-1-15"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 6,
|
||||
"model": "aggregation_regress.book",
|
||||
"fields": {
|
||||
"publisher": 4,
|
||||
"isbn": "155860191",
|
||||
"name": "Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp",
|
||||
"price": "75.00",
|
||||
"rating": 5.0,
|
||||
"authors": [8],
|
||||
"pages": 946,
|
||||
"pubdate": "1991-10-15"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 1,
|
||||
"model": "aggregation_regress.store",
|
||||
"fields": {
|
||||
"books": [1, 2, 3, 4, 5, 6],
|
||||
"name": "Amazon.com",
|
||||
"original_opening": "1994-4-23 9:17:42",
|
||||
"friday_night_closing": "23:59:59"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 2,
|
||||
"model": "aggregation_regress.store",
|
||||
"fields": {
|
||||
"books": [1, 3, 5, 6],
|
||||
"name": "Books.com",
|
||||
"original_opening": "2001-3-15 11:23:37",
|
||||
"friday_night_closing": "23:59:59"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 3,
|
||||
"model": "aggregation_regress.store",
|
||||
"fields": {
|
||||
"books": [3, 4, 6],
|
||||
"name": "Mamma and Pappa's Books",
|
||||
"original_opening": "1945-4-25 16:24:14",
|
||||
"friday_night_closing": "21:30:00"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 1,
|
||||
"model": "aggregation_regress.author",
|
||||
"fields": {
|
||||
"age": 34,
|
||||
"friends": [2, 4],
|
||||
"name": "Adrian Holovaty"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 2,
|
||||
"model": "aggregation_regress.author",
|
||||
"fields": {
|
||||
"age": 35,
|
||||
"friends": [1, 7],
|
||||
"name": "Jacob Kaplan-Moss"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 3,
|
||||
"model": "aggregation_regress.author",
|
||||
"fields": {
|
||||
"age": 45,
|
||||
"friends": [],
|
||||
"name": "Brad Dayley"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 4,
|
||||
"model": "aggregation_regress.author",
|
||||
"fields": {
|
||||
"age": 29,
|
||||
"friends": [1],
|
||||
"name": "James Bennett"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 5,
|
||||
"model": "aggregation_regress.author",
|
||||
"fields": {
|
||||
"age": 37,
|
||||
"friends": [6, 7],
|
||||
"name": "Jeffrey Forcier "
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 6,
|
||||
"model": "aggregation_regress.author",
|
||||
"fields": {
|
||||
"age": 29,
|
||||
"friends": [5, 7],
|
||||
"name": "Paul Bissex"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 7,
|
||||
"model": "aggregation_regress.author",
|
||||
"fields": {
|
||||
"age": 25,
|
||||
"friends": [2, 5, 6],
|
||||
"name": "Wesley J. Chun"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 8,
|
||||
"model": "aggregation_regress.author",
|
||||
"fields": {
|
||||
"age": 57,
|
||||
"friends": [9],
|
||||
"name": "Peter Norvig"
|
||||
}
|
||||
},
|
||||
{
|
||||
"pk": 9,
|
||||
"model": "aggregation_regress.author",
|
||||
"fields": {
|
||||
"age": 46,
|
||||
"friends": [8],
|
||||
"name": "Stuart Russell"
|
||||
}
|
||||
}
|
||||
]
|
|
@ -0,0 +1,199 @@
|
|||
# coding: utf-8
|
||||
from django.db import models
|
||||
from django.conf import settings
|
||||
|
||||
try:
|
||||
sorted
|
||||
except NameError:
|
||||
from django.utils.itercompat import sorted # For Python 2.3
|
||||
|
||||
class Author(models.Model):
|
||||
name = models.CharField(max_length=100)
|
||||
age = models.IntegerField()
|
||||
friends = models.ManyToManyField('self', blank=True)
|
||||
|
||||
def __unicode__(self):
|
||||
return self.name
|
||||
|
||||
class Publisher(models.Model):
|
||||
name = models.CharField(max_length=300)
|
||||
num_awards = models.IntegerField()
|
||||
|
||||
def __unicode__(self):
|
||||
return self.name
|
||||
|
||||
class Book(models.Model):
|
||||
isbn = models.CharField(max_length=9)
|
||||
name = models.CharField(max_length=300)
|
||||
pages = models.IntegerField()
|
||||
rating = models.FloatField()
|
||||
price = models.DecimalField(decimal_places=2, max_digits=6)
|
||||
authors = models.ManyToManyField(Author)
|
||||
publisher = models.ForeignKey(Publisher)
|
||||
pubdate = models.DateField()
|
||||
|
||||
class Meta:
|
||||
ordering = ('name',)
|
||||
|
||||
def __unicode__(self):
|
||||
return self.name
|
||||
|
||||
class Store(models.Model):
|
||||
name = models.CharField(max_length=300)
|
||||
books = models.ManyToManyField(Book)
|
||||
original_opening = models.DateTimeField()
|
||||
friday_night_closing = models.TimeField()
|
||||
|
||||
def __unicode__(self):
|
||||
return self.name
|
||||
|
||||
#Extra does not play well with values. Modify the tests if/when this is fixed.
|
||||
__test__ = {'API_TESTS': """
|
||||
>>> from django.core import management
|
||||
>>> from django.db.models import get_app
|
||||
|
||||
# Reset the database representation of this app.
|
||||
# This will return the database to a clean initial state.
|
||||
>>> management.call_command('flush', verbosity=0, interactive=False)
|
||||
|
||||
>>> from django.db.models import Avg, Sum, Count, Max, Min, StdDev, Variance
|
||||
|
||||
# Ordering requests are ignored
|
||||
>>> Author.objects.all().order_by('name').aggregate(Avg('age'))
|
||||
{'age__avg': 37.4...}
|
||||
|
||||
# Implicit ordering is also ignored
|
||||
>>> Book.objects.all().aggregate(Sum('pages'))
|
||||
{'pages__sum': 3703}
|
||||
|
||||
# Baseline results
|
||||
>>> Book.objects.all().aggregate(Sum('pages'), Avg('pages'))
|
||||
{'pages__sum': 3703, 'pages__avg': 617.1...}
|
||||
|
||||
# Empty values query doesn't affect grouping or results
|
||||
>>> Book.objects.all().values().aggregate(Sum('pages'), Avg('pages'))
|
||||
{'pages__sum': 3703, 'pages__avg': 617.1...}
|
||||
|
||||
# Aggregate overrides extra selected column
|
||||
>>> Book.objects.all().extra(select={'price_per_page' : 'price / pages'}).aggregate(Sum('pages'))
|
||||
{'pages__sum': 3703}
|
||||
|
||||
# Annotations get combined with extra select clauses
|
||||
>>> sorted(Book.objects.all().annotate(mean_auth_age=Avg('authors__age')).extra(select={'manufacture_cost' : 'price * .5'}).get(pk=2).__dict__.items())
|
||||
[('id', 2), ('isbn', u'067232959'), ('manufacture_cost', ...11.545...), ('mean_auth_age', 45.0), ('name', u'Sams Teach Yourself Django in 24 Hours'), ('pages', 528), ('price', Decimal("23.09")), ('pubdate', datetime.date(2008, 3, 3)), ('publisher_id', 2), ('rating', 3.0)]
|
||||
|
||||
# Order of the annotate/extra in the query doesn't matter
|
||||
>>> sorted(Book.objects.all().extra(select={'manufacture_cost' : 'price * .5'}).annotate(mean_auth_age=Avg('authors__age')).get(pk=2).__dict__.items())
|
||||
[('id', 2), ('isbn', u'067232959'), ('manufacture_cost', ...11.545...), ('mean_auth_age', 45.0), ('name', u'Sams Teach Yourself Django in 24 Hours'), ('pages', 528), ('price', Decimal("23.09")), ('pubdate', datetime.date(2008, 3, 3)), ('publisher_id', 2), ('rating', 3.0)]
|
||||
|
||||
# Values queries can be combined with annotate and extra
|
||||
>>> sorted(Book.objects.all().annotate(mean_auth_age=Avg('authors__age')).extra(select={'manufacture_cost' : 'price * .5'}).values().get(pk=2).items())
|
||||
[('id', 2), ('isbn', u'067232959'), ('manufacture_cost', ...11.545...), ('mean_auth_age', 45.0), ('name', u'Sams Teach Yourself Django in 24 Hours'), ('pages', 528), ('price', Decimal("23.09")), ('pubdate', datetime.date(2008, 3, 3)), ('publisher_id', 2), ('rating', 3.0)]
|
||||
|
||||
# The order of the values, annotate and extra clauses doesn't matter
|
||||
>>> sorted(Book.objects.all().values().annotate(mean_auth_age=Avg('authors__age')).extra(select={'manufacture_cost' : 'price * .5'}).get(pk=2).items())
|
||||
[('id', 2), ('isbn', u'067232959'), ('manufacture_cost', ...11.545...), ('mean_auth_age', 45.0), ('name', u'Sams Teach Yourself Django in 24 Hours'), ('pages', 528), ('price', Decimal("23.09")), ('pubdate', datetime.date(2008, 3, 3)), ('publisher_id', 2), ('rating', 3.0)]
|
||||
|
||||
# A values query that selects specific columns reduces the output
|
||||
>>> sorted(Book.objects.all().annotate(mean_auth_age=Avg('authors__age')).extra(select={'price_per_page' : 'price / pages'}).values('name').get(pk=1).items())
|
||||
[('mean_auth_age', 34.5), ('name', u'The Definitive Guide to Django: Web Development Done Right')]
|
||||
|
||||
# The annotations are added to values output if values() precedes annotate()
|
||||
>>> sorted(Book.objects.all().values('name').annotate(mean_auth_age=Avg('authors__age')).extra(select={'price_per_page' : 'price / pages'}).get(pk=1).items())
|
||||
[('mean_auth_age', 34.5), ('name', u'The Definitive Guide to Django: Web Development Done Right')]
|
||||
|
||||
# Check that all of the objects are getting counted (allow_nulls) and that values respects the amount of objects
|
||||
>>> len(Author.objects.all().annotate(Avg('friends__age')).values())
|
||||
9
|
||||
|
||||
# Check that consecutive calls to annotate accumulate in the query
|
||||
>>> Book.objects.values('price').annotate(oldest=Max('authors__age')).order_by('oldest', 'price').annotate(Max('publisher__num_awards'))
|
||||
[{'price': Decimal("30..."), 'oldest': 35, 'publisher__num_awards__max': 3}, {'price': Decimal("29.69"), 'oldest': 37, 'publisher__num_awards__max': 7}, {'price': Decimal("23.09"), 'oldest': 45, 'publisher__num_awards__max': 1}, {'price': Decimal("75..."), 'oldest': 57, 'publisher__num_awards__max': 9}, {'price': Decimal("82.8..."), 'oldest': 57, 'publisher__num_awards__max': 7}]
|
||||
|
||||
# Aggregates can be composed over annotations.
|
||||
# The return type is derived from the composed aggregate
|
||||
>>> Book.objects.all().annotate(num_authors=Count('authors__id')).aggregate(Max('pages'), Max('price'), Sum('num_authors'), Avg('num_authors'))
|
||||
{'num_authors__sum': 10, 'num_authors__avg': 1.66..., 'pages__max': 1132, 'price__max': Decimal("82.80")}
|
||||
|
||||
# Bad field requests in aggregates are caught and reported
|
||||
>>> Book.objects.all().aggregate(num_authors=Count('foo'))
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
FieldError: Cannot resolve keyword 'foo' into field. Choices are: authors, id, isbn, name, pages, price, pubdate, publisher, rating, store
|
||||
|
||||
>>> Book.objects.all().annotate(num_authors=Count('foo'))
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
FieldError: Cannot resolve keyword 'foo' into field. Choices are: authors, id, isbn, name, pages, price, pubdate, publisher, rating, store
|
||||
|
||||
>>> Book.objects.all().annotate(num_authors=Count('authors__id')).aggregate(Max('foo'))
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
FieldError: Cannot resolve keyword 'foo' into field. Choices are: authors, id, isbn, name, pages, price, pubdate, publisher, rating, store, num_authors
|
||||
|
||||
# Old-style count aggregations can be mixed with new-style
|
||||
>>> Book.objects.annotate(num_authors=Count('authors')).count()
|
||||
6
|
||||
|
||||
# Non-ordinal, non-computed Aggregates over annotations correctly inherit
|
||||
# the annotation's internal type if the annotation is ordinal or computed
|
||||
>>> Book.objects.annotate(num_authors=Count('authors')).aggregate(Max('num_authors'))
|
||||
{'num_authors__max': 3}
|
||||
|
||||
>>> Publisher.objects.annotate(avg_price=Avg('book__price')).aggregate(Max('avg_price'))
|
||||
{'avg_price__max': 75.0...}
|
||||
|
||||
# Aliases are quoted to protected aliases that might be reserved names
|
||||
>>> Book.objects.aggregate(number=Max('pages'), select=Max('pages'))
|
||||
{'number': 1132, 'select': 1132}
|
||||
|
||||
|
||||
"""
|
||||
}
|
||||
|
||||
if settings.DATABASE_ENGINE != 'sqlite3':
|
||||
__test__['API_TESTS'] += """
|
||||
# Stddev and Variance are not guaranteed to be available for SQLite.
|
||||
|
||||
>>> Book.objects.aggregate(StdDev('pages'))
|
||||
{'pages__stddev': 311.46...}
|
||||
|
||||
>>> Book.objects.aggregate(StdDev('rating'))
|
||||
{'rating__stddev': 0.60...}
|
||||
|
||||
>>> Book.objects.aggregate(StdDev('price'))
|
||||
{'price__stddev': 24.16...}
|
||||
|
||||
|
||||
>>> Book.objects.aggregate(StdDev('pages', sample=True))
|
||||
{'pages__stddev': 341.19...}
|
||||
|
||||
>>> Book.objects.aggregate(StdDev('rating', sample=True))
|
||||
{'rating__stddev': 0.66...}
|
||||
|
||||
>>> Book.objects.aggregate(StdDev('price', sample=True))
|
||||
{'price__stddev': 26.46...}
|
||||
|
||||
|
||||
>>> Book.objects.aggregate(Variance('pages'))
|
||||
{'pages__variance': 97010.80...}
|
||||
|
||||
>>> Book.objects.aggregate(Variance('rating'))
|
||||
{'rating__variance': 0.36...}
|
||||
|
||||
>>> Book.objects.aggregate(Variance('price'))
|
||||
{'price__variance': 583.77...}
|
||||
|
||||
|
||||
>>> Book.objects.aggregate(Variance('pages', sample=True))
|
||||
{'pages__variance': 116412.96...}
|
||||
|
||||
>>> Book.objects.aggregate(Variance('rating', sample=True))
|
||||
{'rating__variance': 0.44...}
|
||||
|
||||
>>> Book.objects.aggregate(Variance('price', sample=True))
|
||||
{'price__variance': 700.53...}
|
||||
|
||||
|
||||
"""
|
||||
|
Loading…
Reference in New Issue