django/tests/gis_tests/distapp/tests.py

671 lines
32 KiB
Python

from __future__ import unicode_literals
from django.contrib.gis.db.models.functions import (
Area, Distance, Length, Perimeter, Transform,
)
from django.contrib.gis.geos import HAS_GEOS
from django.contrib.gis.measure import D # alias for Distance
from django.db import connection
from django.db.models import Q
from django.test import TestCase, skipUnlessDBFeature
from ..utils import no_oracle, oracle, postgis, spatialite
if HAS_GEOS:
from django.contrib.gis.geos import GEOSGeometry, LineString, Point
from .models import (AustraliaCity, Interstate, SouthTexasInterstate,
SouthTexasCity, SouthTexasCityFt, CensusZipcode, SouthTexasZipcode)
@skipUnlessDBFeature("gis_enabled")
class DistanceTest(TestCase):
fixtures = ['initial']
if HAS_GEOS:
# A point we are testing distances with -- using a WGS84
# coordinate that'll be implicitly transformed to that to
# the coordinate system of the field, EPSG:32140 (Texas South Central
# w/units in meters)
stx_pnt = GEOSGeometry('POINT (-95.370401017314293 29.704867409475465)', 4326)
# Another one for Australia
au_pnt = GEOSGeometry('POINT (150.791 -34.4919)', 4326)
def get_names(self, qs):
cities = [c.name for c in qs]
cities.sort()
return cities
def test_init(self):
"""
Test initialization of distance models.
"""
self.assertEqual(9, SouthTexasCity.objects.count())
self.assertEqual(9, SouthTexasCityFt.objects.count())
self.assertEqual(11, AustraliaCity.objects.count())
self.assertEqual(4, SouthTexasZipcode.objects.count())
self.assertEqual(4, CensusZipcode.objects.count())
self.assertEqual(1, Interstate.objects.count())
self.assertEqual(1, SouthTexasInterstate.objects.count())
@skipUnlessDBFeature("supports_dwithin_lookup")
def test_dwithin(self):
"""
Test the `dwithin` lookup type.
"""
# Distances -- all should be equal (except for the
# degree/meter pair in au_cities, that's somewhat
# approximate).
tx_dists = [(7000, 22965.83), D(km=7), D(mi=4.349)]
au_dists = [(0.5, 32000), D(km=32), D(mi=19.884)]
# Expected cities for Australia and Texas.
tx_cities = ['Downtown Houston', 'Southside Place']
au_cities = ['Mittagong', 'Shellharbour', 'Thirroul', 'Wollongong']
# Performing distance queries on two projected coordinate systems one
# with units in meters and the other in units of U.S. survey feet.
for dist in tx_dists:
if isinstance(dist, tuple):
dist1, dist2 = dist
else:
dist1 = dist2 = dist
qs1 = SouthTexasCity.objects.filter(point__dwithin=(self.stx_pnt, dist1))
qs2 = SouthTexasCityFt.objects.filter(point__dwithin=(self.stx_pnt, dist2))
for qs in qs1, qs2:
self.assertEqual(tx_cities, self.get_names(qs))
# Now performing the `dwithin` queries on a geodetic coordinate system.
for dist in au_dists:
if isinstance(dist, D) and not oracle:
type_error = True
else:
type_error = False
if isinstance(dist, tuple):
if oracle:
dist = dist[1]
else:
dist = dist[0]
# Creating the query set.
qs = AustraliaCity.objects.order_by('name')
if type_error:
# A ValueError should be raised on PostGIS when trying to pass
# Distance objects into a DWithin query using a geodetic field.
self.assertRaises(ValueError, AustraliaCity.objects.filter(point__dwithin=(self.au_pnt, dist)).count)
else:
self.assertListEqual(au_cities, self.get_names(qs.filter(point__dwithin=(self.au_pnt, dist))))
@skipUnlessDBFeature("has_distance_method")
def test_distance_projected(self):
"""
Test the `distance` GeoQuerySet method on projected coordinate systems.
"""
# The point for La Grange, TX
lagrange = GEOSGeometry('POINT(-96.876369 29.905320)', 4326)
# Reference distances in feet and in meters. Got these values from
# using the provided raw SQL statements.
# SELECT ST_Distance(point, ST_Transform(ST_GeomFromText('POINT(-96.876369 29.905320)', 4326), 32140))
# FROM distapp_southtexascity;
m_distances = [147075.069813, 139630.198056, 140888.552826,
138809.684197, 158309.246259, 212183.594374,
70870.188967, 165337.758878, 139196.085105]
# SELECT ST_Distance(point, ST_Transform(ST_GeomFromText('POINT(-96.876369 29.905320)', 4326), 2278))
# FROM distapp_southtexascityft;
# Oracle 11 thinks this is not a projected coordinate system, so it's
# not tested.
ft_distances = [482528.79154625, 458103.408123001, 462231.860397575,
455411.438904354, 519386.252102563, 696139.009211594,
232513.278304279, 542445.630586414, 456679.155883207]
# Testing using different variations of parameters and using models
# with different projected coordinate systems.
dist1 = SouthTexasCity.objects.distance(lagrange, field_name='point').order_by('id')
dist2 = SouthTexasCity.objects.distance(lagrange).order_by('id') # Using GEOSGeometry parameter
if spatialite or oracle:
dist_qs = [dist1, dist2]
else:
dist3 = SouthTexasCityFt.objects.distance(lagrange.ewkt).order_by('id') # Using EWKT string parameter.
dist4 = SouthTexasCityFt.objects.distance(lagrange).order_by('id')
dist_qs = [dist1, dist2, dist3, dist4]
# Original query done on PostGIS, have to adjust AlmostEqual tolerance
# for Oracle.
tol = 2 if oracle else 5
# Ensuring expected distances are returned for each distance queryset.
for qs in dist_qs:
for i, c in enumerate(qs):
self.assertAlmostEqual(m_distances[i], c.distance.m, tol)
self.assertAlmostEqual(ft_distances[i], c.distance.survey_ft, tol)
@skipUnlessDBFeature("has_distance_method", "supports_distance_geodetic")
def test_distance_geodetic(self):
"""
Test the `distance` GeoQuerySet method on geodetic coordinate systems.
"""
tol = 2 if oracle else 5
# Testing geodetic distance calculation with a non-point geometry
# (a LineString of Wollongong and Shellharbour coords).
ls = LineString(((150.902, -34.4245), (150.87, -34.5789)))
# Reference query:
# SELECT ST_distance_sphere(point, ST_GeomFromText('LINESTRING(150.9020 -34.4245,150.8700 -34.5789)', 4326))
# FROM distapp_australiacity ORDER BY name;
distances = [1120954.92533513, 140575.720018241, 640396.662906304,
60580.9693849269, 972807.955955075, 568451.8357838,
40435.4335201384, 0, 68272.3896586844, 12375.0643697706, 0]
qs = AustraliaCity.objects.distance(ls).order_by('name')
for city, distance in zip(qs, distances):
# Testing equivalence to within a meter.
self.assertAlmostEqual(distance, city.distance.m, 0)
# Got the reference distances using the raw SQL statements:
# SELECT ST_distance_spheroid(point, ST_GeomFromText('POINT(151.231341 -33.952685)', 4326),
# 'SPHEROID["WGS 84",6378137.0,298.257223563]') FROM distapp_australiacity WHERE (NOT (id = 11));
# SELECT ST_distance_sphere(point, ST_GeomFromText('POINT(151.231341 -33.952685)', 4326))
# FROM distapp_australiacity WHERE (NOT (id = 11)); st_distance_sphere
if connection.ops.postgis and connection.ops.proj_version_tuple() >= (4, 7, 0):
# PROJ.4 versions 4.7+ have updated datums, and thus different
# distance values.
spheroid_distances = [60504.0628957201, 77023.9489850262, 49154.8867574404,
90847.4358768573, 217402.811919332, 709599.234564757,
640011.483550888, 7772.00667991925, 1047861.78619339,
1165126.55236034]
sphere_distances = [60580.9693849267, 77144.0435286473, 49199.4415344719,
90804.7533823494, 217713.384600405, 709134.127242793,
639828.157159169, 7786.82949717788, 1049204.06569028,
1162623.7238134]
else:
spheroid_distances = [60504.0628825298, 77023.948962654, 49154.8867507115,
90847.435881812, 217402.811862568, 709599.234619957,
640011.483583758, 7772.00667666425, 1047861.7859506,
1165126.55237647]
sphere_distances = [60580.7612632291, 77143.7785056615, 49199.2725132184,
90804.4414289463, 217712.63666124, 709131.691061906,
639825.959074112, 7786.80274606706, 1049200.46122281,
1162619.7297006]
# Testing with spheroid distances first.
hillsdale = AustraliaCity.objects.get(name='Hillsdale')
qs = AustraliaCity.objects.exclude(id=hillsdale.id).distance(hillsdale.point, spheroid=True).order_by('id')
for i, c in enumerate(qs):
self.assertAlmostEqual(spheroid_distances[i], c.distance.m, tol)
if postgis:
# PostGIS uses sphere-only distances by default, testing these as well.
qs = AustraliaCity.objects.exclude(id=hillsdale.id).distance(hillsdale.point).order_by('id')
for i, c in enumerate(qs):
self.assertAlmostEqual(sphere_distances[i], c.distance.m, tol)
@no_oracle # Oracle already handles geographic distance calculation.
@skipUnlessDBFeature("has_distance_method")
def test_distance_transform(self):
"""
Test the `distance` GeoQuerySet method used with `transform` on a geographic field.
"""
# We'll be using a Polygon (created by buffering the centroid
# of 77005 to 100m) -- which aren't allowed in geographic distance
# queries normally, however our field has been transformed to
# a non-geographic system.
z = SouthTexasZipcode.objects.get(name='77005')
# Reference query:
# SELECT ST_Distance(ST_Transform("distapp_censuszipcode"."poly", 32140),
# ST_GeomFromText('<buffer_wkt>', 32140))
# FROM "distapp_censuszipcode";
dists_m = [3553.30384972258, 1243.18391525602, 2186.15439472242]
# Having our buffer in the SRID of the transformation and of the field
# -- should get the same results. The first buffer has no need for
# transformation SQL because it is the same SRID as what was given
# to `transform()`. The second buffer will need to be transformed,
# however.
buf1 = z.poly.centroid.buffer(100)
buf2 = buf1.transform(4269, clone=True)
ref_zips = ['77002', '77025', '77401']
for buf in [buf1, buf2]:
qs = CensusZipcode.objects.exclude(name='77005').transform(32140).distance(buf).order_by('name')
self.assertListEqual(ref_zips, self.get_names(qs))
for i, z in enumerate(qs):
self.assertAlmostEqual(z.distance.m, dists_m[i], 5)
@skipUnlessDBFeature("supports_distances_lookups")
def test_distance_lookups(self):
"""
Test the `distance_lt`, `distance_gt`, `distance_lte`, and `distance_gte` lookup types.
"""
# Retrieving the cities within a 20km 'donut' w/a 7km radius 'hole'
# (thus, Houston and Southside place will be excluded as tested in
# the `test02_dwithin` above).
qs1 = SouthTexasCity.objects.filter(point__distance_gte=(self.stx_pnt, D(km=7))).filter(
point__distance_lte=(self.stx_pnt, D(km=20)),
)
# Can't determine the units on SpatiaLite from PROJ.4 string, and
# Oracle 11 incorrectly thinks it is not projected.
if spatialite or oracle:
dist_qs = (qs1,)
else:
qs2 = SouthTexasCityFt.objects.filter(point__distance_gte=(self.stx_pnt, D(km=7))).filter(
point__distance_lte=(self.stx_pnt, D(km=20)),
)
dist_qs = (qs1, qs2)
for qs in dist_qs:
cities = self.get_names(qs)
self.assertEqual(cities, ['Bellaire', 'Pearland', 'West University Place'])
# Doing a distance query using Polygons instead of a Point.
z = SouthTexasZipcode.objects.get(name='77005')
qs = SouthTexasZipcode.objects.exclude(name='77005').filter(poly__distance_lte=(z.poly, D(m=275)))
self.assertEqual(['77025', '77401'], self.get_names(qs))
# If we add a little more distance 77002 should be included.
qs = SouthTexasZipcode.objects.exclude(name='77005').filter(poly__distance_lte=(z.poly, D(m=300)))
self.assertEqual(['77002', '77025', '77401'], self.get_names(qs))
@skipUnlessDBFeature("supports_distances_lookups", "supports_distance_geodetic")
def test_geodetic_distance_lookups(self):
"""
Test distance lookups on geodetic coordinate systems.
"""
# Line is from Canberra to Sydney. Query is for all other cities within
# a 100km of that line (which should exclude only Hobart & Adelaide).
line = GEOSGeometry('LINESTRING(144.9630 -37.8143,151.2607 -33.8870)', 4326)
dist_qs = AustraliaCity.objects.filter(point__distance_lte=(line, D(km=100)))
self.assertEqual(9, dist_qs.count())
self.assertEqual(['Batemans Bay', 'Canberra', 'Hillsdale',
'Melbourne', 'Mittagong', 'Shellharbour',
'Sydney', 'Thirroul', 'Wollongong'],
self.get_names(dist_qs))
# Too many params (4 in this case) should raise a ValueError.
queryset = AustraliaCity.objects.filter(point__distance_lte=('POINT(5 23)', D(km=100), 'spheroid', '4'))
self.assertRaises(ValueError, len, queryset)
# Not enough params should raise a ValueError.
self.assertRaises(ValueError, len,
AustraliaCity.objects.filter(point__distance_lte=('POINT(5 23)',)))
# Getting all cities w/in 550 miles of Hobart.
hobart = AustraliaCity.objects.get(name='Hobart')
qs = AustraliaCity.objects.exclude(name='Hobart').filter(point__distance_lte=(hobart.point, D(mi=550)))
cities = self.get_names(qs)
self.assertEqual(cities, ['Batemans Bay', 'Canberra', 'Melbourne'])
# Cities that are either really close or really far from Wollongong --
# and using different units of distance.
wollongong = AustraliaCity.objects.get(name='Wollongong')
d1, d2 = D(yd=19500), D(nm=400) # Yards (~17km) & Nautical miles.
# Normal geodetic distance lookup (uses `distance_sphere` on PostGIS.
gq1 = Q(point__distance_lte=(wollongong.point, d1))
gq2 = Q(point__distance_gte=(wollongong.point, d2))
qs1 = AustraliaCity.objects.exclude(name='Wollongong').filter(gq1 | gq2)
# Geodetic distance lookup but telling GeoDjango to use `distance_spheroid`
# instead (we should get the same results b/c accuracy variance won't matter
# in this test case).
querysets = [qs1]
if connection.features.has_distance_spheroid_method:
gq3 = Q(point__distance_lte=(wollongong.point, d1, 'spheroid'))
gq4 = Q(point__distance_gte=(wollongong.point, d2, 'spheroid'))
qs2 = AustraliaCity.objects.exclude(name='Wollongong').filter(gq3 | gq4)
querysets.append(qs2)
for qs in querysets:
cities = self.get_names(qs)
self.assertEqual(cities, ['Adelaide', 'Hobart', 'Shellharbour', 'Thirroul'])
@skipUnlessDBFeature("has_area_method")
def test_area(self):
"""
Test the `area` GeoQuerySet method.
"""
# Reference queries:
# SELECT ST_Area(poly) FROM distapp_southtexaszipcode;
area_sq_m = [5437908.90234375, 10183031.4389648, 11254471.0073242, 9881708.91772461]
# Tolerance has to be lower for Oracle
tol = 2
for i, z in enumerate(SouthTexasZipcode.objects.order_by('name').area()):
self.assertAlmostEqual(area_sq_m[i], z.area.sq_m, tol)
@skipUnlessDBFeature("has_length_method")
def test_length(self):
"""
Test the `length` GeoQuerySet method.
"""
# Reference query (should use `length_spheroid`).
# SELECT ST_length_spheroid(ST_GeomFromText('<wkt>', 4326) 'SPHEROID["WGS 84",6378137,298.257223563,
# AUTHORITY["EPSG","7030"]]');
len_m1 = 473504.769553813
len_m2 = 4617.668
if connection.features.supports_distance_geodetic:
qs = Interstate.objects.length()
tol = 2 if oracle else 3
self.assertAlmostEqual(len_m1, qs[0].length.m, tol)
else:
# Does not support geodetic coordinate systems.
self.assertRaises(ValueError, Interstate.objects.length)
# Now doing length on a projected coordinate system.
i10 = SouthTexasInterstate.objects.length().get(name='I-10')
self.assertAlmostEqual(len_m2, i10.length.m, 2)
@skipUnlessDBFeature("has_perimeter_method")
def test_perimeter(self):
"""
Test the `perimeter` GeoQuerySet method.
"""
# Reference query:
# SELECT ST_Perimeter(distapp_southtexaszipcode.poly) FROM distapp_southtexaszipcode;
perim_m = [18404.3550889361, 15627.2108551001, 20632.5588368978, 17094.5996143697]
tol = 2 if oracle else 7
for i, z in enumerate(SouthTexasZipcode.objects.order_by('name').perimeter()):
self.assertAlmostEqual(perim_m[i], z.perimeter.m, tol)
# Running on points; should return 0.
for i, c in enumerate(SouthTexasCity.objects.perimeter(model_att='perim')):
self.assertEqual(0, c.perim.m)
@skipUnlessDBFeature("has_area_method", "has_distance_method")
def test_measurement_null_fields(self):
"""
Test the measurement GeoQuerySet methods on fields with NULL values.
"""
# Creating SouthTexasZipcode w/NULL value.
SouthTexasZipcode.objects.create(name='78212')
# Performing distance/area queries against the NULL PolygonField,
# and ensuring the result of the operations is None.
htown = SouthTexasCity.objects.get(name='Downtown Houston')
z = SouthTexasZipcode.objects.distance(htown.point).area().get(name='78212')
self.assertIsNone(z.distance)
self.assertIsNone(z.area)
@skipUnlessDBFeature("has_distance_method")
def test_distance_order_by(self):
qs = SouthTexasCity.objects.distance(Point(3, 3)).order_by(
'distance'
).values_list('name', flat=True).filter(name__in=('San Antonio', 'Pearland'))
self.assertQuerysetEqual(qs, ['San Antonio', 'Pearland'], lambda x: x)
'''
=============================
Distance functions on PostGIS
=============================
| Projected Geometry | Lon/lat Geometry | Geography (4326)
ST_Distance(geom1, geom2) | OK (meters) | :-( (degrees) | OK (meters)
ST_Distance(geom1, geom2, use_spheroid=False) | N/A | N/A | OK (meters), less accurate, quick
Distance_Sphere(geom1, geom2) | N/A | OK (meters) | N/A
Distance_Spheroid(geom1, geom2, spheroid) | N/A | OK (meters) | N/A
================================
Distance functions on Spatialite
================================
| Projected Geometry | Lon/lat Geometry
ST_Distance(geom1, geom2) | OK (meters) | N/A
ST_Distance(geom1, geom2, use_ellipsoid=True) | N/A | OK (meters)
ST_Distance(geom1, geom2, use_ellipsoid=False) | N/A | OK (meters), less accurate, quick
'''
@skipUnlessDBFeature("gis_enabled")
class DistanceFunctionsTests(TestCase):
fixtures = ['initial']
@skipUnlessDBFeature("has_Area_function")
def test_area(self):
# Reference queries:
# SELECT ST_Area(poly) FROM distapp_southtexaszipcode;
area_sq_m = [5437908.90234375, 10183031.4389648, 11254471.0073242, 9881708.91772461]
# Tolerance has to be lower for Oracle
tol = 2
for i, z in enumerate(SouthTexasZipcode.objects.annotate(area=Area('poly')).order_by('name')):
# MySQL is returning a raw float value
self.assertAlmostEqual(area_sq_m[i], z.area.sq_m if hasattr(z.area, 'sq_m') else z.area, tol)
@skipUnlessDBFeature("has_Distance_function")
def test_distance_simple(self):
"""
Test a simple distance query, with projected coordinates and without
transformation.
"""
lagrange = GEOSGeometry('POINT(805066.295722839 4231496.29461335)', 32140)
houston = SouthTexasCity.objects.annotate(dist=Distance('point', lagrange)).order_by('id').first()
tol = 2 if oracle else 5
self.assertAlmostEqual(
houston.dist.m if hasattr(houston.dist, 'm') else houston.dist,
147075.069813,
tol
)
@skipUnlessDBFeature("has_Distance_function", "has_Transform_function")
def test_distance_projected(self):
"""
Test the `Distance` function on projected coordinate systems.
"""
# The point for La Grange, TX
lagrange = GEOSGeometry('POINT(-96.876369 29.905320)', 4326)
# Reference distances in feet and in meters. Got these values from
# using the provided raw SQL statements.
# SELECT ST_Distance(point, ST_Transform(ST_GeomFromText('POINT(-96.876369 29.905320)', 4326), 32140))
# FROM distapp_southtexascity;
m_distances = [147075.069813, 139630.198056, 140888.552826,
138809.684197, 158309.246259, 212183.594374,
70870.188967, 165337.758878, 139196.085105]
# SELECT ST_Distance(point, ST_Transform(ST_GeomFromText('POINT(-96.876369 29.905320)', 4326), 2278))
# FROM distapp_southtexascityft;
# Oracle 11 thinks this is not a projected coordinate system, so it's
# not tested.
ft_distances = [482528.79154625, 458103.408123001, 462231.860397575,
455411.438904354, 519386.252102563, 696139.009211594,
232513.278304279, 542445.630586414, 456679.155883207]
# Testing using different variations of parameters and using models
# with different projected coordinate systems.
dist1 = SouthTexasCity.objects.annotate(distance=Distance('point', lagrange)).order_by('id')
if spatialite or oracle:
dist_qs = [dist1]
else:
dist2 = SouthTexasCityFt.objects.annotate(distance=Distance('point', lagrange)).order_by('id')
# Using EWKT string parameter.
dist3 = SouthTexasCityFt.objects.annotate(distance=Distance('point', lagrange.ewkt)).order_by('id')
dist_qs = [dist1, dist2, dist3]
# Original query done on PostGIS, have to adjust AlmostEqual tolerance
# for Oracle.
tol = 2 if oracle else 5
# Ensuring expected distances are returned for each distance queryset.
for qs in dist_qs:
for i, c in enumerate(qs):
self.assertAlmostEqual(m_distances[i], c.distance.m, tol)
self.assertAlmostEqual(ft_distances[i], c.distance.survey_ft, tol)
@skipUnlessDBFeature("has_Distance_function", "supports_distance_geodetic")
def test_distance_geodetic(self):
"""
Test the `Distance` function on geodetic coordinate systems.
"""
# Testing geodetic distance calculation with a non-point geometry
# (a LineString of Wollongong and Shellharbour coords).
ls = LineString(((150.902, -34.4245), (150.87, -34.5789)), srid=4326)
# Reference query:
# SELECT ST_distance_sphere(point, ST_GeomFromText('LINESTRING(150.9020 -34.4245,150.8700 -34.5789)', 4326))
# FROM distapp_australiacity ORDER BY name;
distances = [1120954.92533513, 140575.720018241, 640396.662906304,
60580.9693849269, 972807.955955075, 568451.8357838,
40435.4335201384, 0, 68272.3896586844, 12375.0643697706, 0]
qs = AustraliaCity.objects.annotate(distance=Distance('point', ls)).order_by('name')
for city, distance in zip(qs, distances):
# Testing equivalence to within a meter.
self.assertAlmostEqual(distance, city.distance.m, 0)
@skipUnlessDBFeature("has_Distance_function", "supports_distance_geodetic")
def test_distance_geodetic_spheroid(self):
tol = 2 if oracle else 5
# Got the reference distances using the raw SQL statements:
# SELECT ST_distance_spheroid(point, ST_GeomFromText('POINT(151.231341 -33.952685)', 4326),
# 'SPHEROID["WGS 84",6378137.0,298.257223563]') FROM distapp_australiacity WHERE (NOT (id = 11));
# SELECT ST_distance_sphere(point, ST_GeomFromText('POINT(151.231341 -33.952685)', 4326))
# FROM distapp_australiacity WHERE (NOT (id = 11)); st_distance_sphere
if connection.ops.postgis and connection.ops.proj_version_tuple() >= (4, 7, 0):
# PROJ.4 versions 4.7+ have updated datums, and thus different
# distance values.
spheroid_distances = [60504.0628957201, 77023.9489850262, 49154.8867574404,
90847.4358768573, 217402.811919332, 709599.234564757,
640011.483550888, 7772.00667991925, 1047861.78619339,
1165126.55236034]
sphere_distances = [60580.9693849267, 77144.0435286473, 49199.4415344719,
90804.7533823494, 217713.384600405, 709134.127242793,
639828.157159169, 7786.82949717788, 1049204.06569028,
1162623.7238134]
else:
spheroid_distances = [60504.0628825298, 77023.948962654, 49154.8867507115,
90847.435881812, 217402.811862568, 709599.234619957,
640011.483583758, 7772.00667666425, 1047861.7859506,
1165126.55237647]
sphere_distances = [60580.7612632291, 77143.7785056615, 49199.2725132184,
90804.4414289463, 217712.63666124, 709131.691061906,
639825.959074112, 7786.80274606706, 1049200.46122281,
1162619.7297006]
# Testing with spheroid distances first.
hillsdale = AustraliaCity.objects.get(name='Hillsdale')
qs = AustraliaCity.objects.exclude(id=hillsdale.id).annotate(
distance=Distance('point', hillsdale.point, spheroid=True)
).order_by('id')
for i, c in enumerate(qs):
self.assertAlmostEqual(spheroid_distances[i], c.distance.m, tol)
if postgis:
# PostGIS uses sphere-only distances by default, testing these as well.
qs = AustraliaCity.objects.exclude(id=hillsdale.id).annotate(
distance=Distance('point', hillsdale.point)
).order_by('id')
for i, c in enumerate(qs):
self.assertAlmostEqual(sphere_distances[i], c.distance.m, tol)
@no_oracle # Oracle already handles geographic distance calculation.
@skipUnlessDBFeature("has_Distance_function", 'has_Transform_function')
def test_distance_transform(self):
"""
Test the `Distance` function used with `Transform` on a geographic field.
"""
# We'll be using a Polygon (created by buffering the centroid
# of 77005 to 100m) -- which aren't allowed in geographic distance
# queries normally, however our field has been transformed to
# a non-geographic system.
z = SouthTexasZipcode.objects.get(name='77005')
# Reference query:
# SELECT ST_Distance(ST_Transform("distapp_censuszipcode"."poly", 32140),
# ST_GeomFromText('<buffer_wkt>', 32140))
# FROM "distapp_censuszipcode";
dists_m = [3553.30384972258, 1243.18391525602, 2186.15439472242]
# Having our buffer in the SRID of the transformation and of the field
# -- should get the same results. The first buffer has no need for
# transformation SQL because it is the same SRID as what was given
# to `transform()`. The second buffer will need to be transformed,
# however.
buf1 = z.poly.centroid.buffer(100)
buf2 = buf1.transform(4269, clone=True)
ref_zips = ['77002', '77025', '77401']
for buf in [buf1, buf2]:
qs = CensusZipcode.objects.exclude(name='77005').annotate(
distance=Distance(Transform('poly', 32140), buf)
).order_by('name')
self.assertEqual(ref_zips, sorted([c.name for c in qs]))
for i, z in enumerate(qs):
self.assertAlmostEqual(z.distance.m, dists_m[i], 5)
@skipUnlessDBFeature("has_Distance_function")
def test_distance_order_by(self):
qs = SouthTexasCity.objects.annotate(distance=Distance('point', Point(3, 3, srid=32140))).order_by(
'distance'
).values_list('name', flat=True).filter(name__in=('San Antonio', 'Pearland'))
self.assertQuerysetEqual(qs, ['San Antonio', 'Pearland'], lambda x: x)
@skipUnlessDBFeature("has_Length_function")
def test_length(self):
"""
Test the `Length` function.
"""
# Reference query (should use `length_spheroid`).
# SELECT ST_length_spheroid(ST_GeomFromText('<wkt>', 4326) 'SPHEROID["WGS 84",6378137,298.257223563,
# AUTHORITY["EPSG","7030"]]');
len_m1 = 473504.769553813
len_m2 = 4617.668
if connection.features.supports_length_geodetic:
qs = Interstate.objects.annotate(length=Length('path'))
tol = 2 if oracle else 3
self.assertAlmostEqual(len_m1, qs[0].length.m, tol)
# TODO: test with spheroid argument (True and False)
else:
# Does not support geodetic coordinate systems.
with self.assertRaises(NotImplementedError):
list(Interstate.objects.annotate(length=Length('path')))
# Now doing length on a projected coordinate system.
i10 = SouthTexasInterstate.objects.annotate(length=Length('path')).get(name='I-10')
self.assertAlmostEqual(len_m2, i10.length.m if isinstance(i10.length, D) else i10.length, 2)
self.assertTrue(
SouthTexasInterstate.objects.annotate(length=Length('path')).filter(length__gt=4000).exists()
)
@skipUnlessDBFeature("has_Perimeter_function")
def test_perimeter(self):
"""
Test the `Perimeter` function.
"""
# Reference query:
# SELECT ST_Perimeter(distapp_southtexaszipcode.poly) FROM distapp_southtexaszipcode;
perim_m = [18404.3550889361, 15627.2108551001, 20632.5588368978, 17094.5996143697]
tol = 2 if oracle else 7
qs = SouthTexasZipcode.objects.annotate(perimeter=Perimeter('poly')).order_by('name')
for i, z in enumerate(qs):
self.assertAlmostEqual(perim_m[i], z.perimeter.m, tol)
# Running on points; should return 0.
qs = SouthTexasCity.objects.annotate(perim=Perimeter('point'))
for city in qs:
self.assertEqual(0, city.perim.m)
@skipUnlessDBFeature("supports_null_geometries", "has_Area_function", "has_Distance_function")
def test_measurement_null_fields(self):
"""
Test the measurement functions on fields with NULL values.
"""
# Creating SouthTexasZipcode w/NULL value.
SouthTexasZipcode.objects.create(name='78212')
# Performing distance/area queries against the NULL PolygonField,
# and ensuring the result of the operations is None.
htown = SouthTexasCity.objects.get(name='Downtown Houston')
z = SouthTexasZipcode.objects.annotate(
distance=Distance('poly', htown.point), area=Area('poly')
).get(name='78212')
self.assertIsNone(z.distance)
self.assertIsNone(z.area)