96 lines
3.1 KiB
Python
96 lines
3.1 KiB
Python
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Calculate statistics of feature files."""
|
||
|
import argparse
|
||
|
import logging
|
||
|
from pathlib import Path
|
||
|
|
||
|
import jsonlines
|
||
|
import numpy as np
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from parakeet.datasets.data_table import DataTable
|
||
|
|
||
|
|
||
|
def main():
|
||
|
"""Run preprocessing process."""
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description="Compute mean and variance of dumped raw features.")
|
||
|
parser.add_argument(
|
||
|
"--metadata", type=str, help="json file with id and file paths ")
|
||
|
parser.add_argument(
|
||
|
"--field-name",
|
||
|
type=str,
|
||
|
help="name of the field to compute statistics for.")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--output",
|
||
|
type=str,
|
||
|
help="path to save statistics. if not provided, "
|
||
|
"stats will be saved in the above root directory with name stats.npy")
|
||
|
parser.add_argument(
|
||
|
"--verbose",
|
||
|
type=int,
|
||
|
default=1,
|
||
|
help="logging level. higher is more logging. (default=1)")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
# set logger
|
||
|
if args.verbose > 1:
|
||
|
logging.basicConfig(
|
||
|
level=logging.DEBUG,
|
||
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
|
||
|
)
|
||
|
elif args.verbose > 0:
|
||
|
logging.basicConfig(
|
||
|
level=logging.INFO,
|
||
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
|
||
|
)
|
||
|
else:
|
||
|
logging.basicConfig(
|
||
|
level=logging.WARN,
|
||
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
|
||
|
)
|
||
|
logging.warning('Skip DEBUG/INFO messages')
|
||
|
|
||
|
# check directory existence
|
||
|
if args.output is None:
|
||
|
args.output = Path(
|
||
|
args.metadata).parent.with_name(args.field_name + "_stats.npy")
|
||
|
else:
|
||
|
args.output = Path(args.output)
|
||
|
args.output.parent.mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
with jsonlines.open(args.metadata, 'r') as reader:
|
||
|
metadata = list(reader)
|
||
|
dataset = DataTable(
|
||
|
metadata,
|
||
|
fields=[args.field_name],
|
||
|
converters={args.field_name: np.load}, )
|
||
|
logging.info(f"The number of files = {len(dataset)}.")
|
||
|
|
||
|
# calculate statistics
|
||
|
scaler = StandardScaler()
|
||
|
for datum in tqdm(dataset):
|
||
|
# StandardScalar supports (*, num_features) by default
|
||
|
scaler.partial_fit(datum[args.field_name])
|
||
|
|
||
|
stats = np.stack([scaler.mean_, scaler.scale_], axis=0)
|
||
|
np.save(str(args.output), stats.astype(np.float32), allow_pickle=False)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|