Parakeet/utils/fastspeech2_normalize.py

186 lines
6.2 KiB
Python
Raw Normal View History

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Normalize feature files and dump them."""
import argparse
import logging
from operator import itemgetter
from pathlib import Path
import jsonlines
import numpy as np
2021-08-24 19:58:48 +08:00
from parakeet.datasets.data_table import DataTable
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
)
parser.add_argument(
"--metadata",
type=str,
required=True,
help="directory including feature files to be normalized. "
"you need to specify either *-scp or rootdir.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump normalized feature files.")
parser.add_argument(
2021-07-22 18:31:34 +08:00
"--speech-stats",
type=str,
required=True,
help="speech statistics file.")
parser.add_argument(
2021-08-17 15:29:30 +08:00
"--pitch-stats", type=str, required=True, help="pitch statistics file.")
parser.add_argument(
2021-07-22 18:31:34 +08:00
"--energy-stats",
type=str,
required=True,
help="energy statistics file.")
parser.add_argument(
2021-08-03 18:10:39 +08:00
"--phones-dict",
type=str,
default="phone_id_map.txt ",
help="phone vocabulary file.")
parser.add_argument(
2021-08-24 19:58:48 +08:00
"--speaker-dict",
type=str,
default="speaker_id_map.txt ",
help="speaker id map file.")
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)")
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
logging.warning('Skip DEBUG/INFO messages')
# check directory existence
dumpdir = Path(args.dumpdir).resolve()
dumpdir.mkdir(parents=True, exist_ok=True)
# get dataset
with jsonlines.open(args.metadata, 'r') as reader:
metadata = list(reader)
dataset = DataTable(
metadata,
converters={
"speech": np.load,
"pitch": np.load,
"energy": np.load,
})
logging.info(f"The number of files = {len(dataset)}.")
# restore scaler
speech_scaler = StandardScaler()
speech_scaler.mean_ = np.load(args.speech_stats)[0]
speech_scaler.scale_ = np.load(args.speech_stats)[1]
speech_scaler.n_features_in_ = speech_scaler.mean_.shape[0]
pitch_scaler = StandardScaler()
pitch_scaler.mean_ = np.load(args.pitch_stats)[0]
pitch_scaler.scale_ = np.load(args.pitch_stats)[1]
pitch_scaler.n_features_in_ = pitch_scaler.mean_.shape[0]
energy_scaler = StandardScaler()
energy_scaler.mean_ = np.load(args.energy_stats)[0]
energy_scaler.scale_ = np.load(args.energy_stats)[1]
energy_scaler.n_features_in_ = energy_scaler.mean_.shape[0]
2021-08-03 18:10:39 +08:00
vocab_phones = {}
with open(args.phones_dict, 'rt') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
2021-08-03 18:10:39 +08:00
vocab_phones[phn] = int(id)
2021-08-24 19:58:48 +08:00
vocab_speaker = {}
with open(args.speaker_dict, 'rt') as f:
spk_id = [line.strip().split() for line in f.readlines()]
for spk, id in spk_id:
vocab_speaker[spk] = int(id)
# process each file
output_metadata = []
for item in tqdm(dataset):
utt_id = item['utt_id']
speech = item['speech']
pitch = item['pitch']
energy = item['energy']
# normalize
speech = speech_scaler.transform(speech)
speech_dir = dumpdir / "data_speech"
speech_dir.mkdir(parents=True, exist_ok=True)
speech_path = speech_dir / f"{utt_id}_speech.npy"
np.save(speech_path, speech.astype(np.float32), allow_pickle=False)
pitch = pitch_scaler.transform(pitch)
pitch_dir = dumpdir / "data_pitch"
pitch_dir.mkdir(parents=True, exist_ok=True)
pitch_path = pitch_dir / f"{utt_id}_pitch.npy"
np.save(pitch_path, pitch.astype(np.float32), allow_pickle=False)
energy = energy_scaler.transform(energy)
energy_dir = dumpdir / "data_energy"
energy_dir.mkdir(parents=True, exist_ok=True)
energy_path = energy_dir / f"{utt_id}_energy.npy"
np.save(energy_path, energy.astype(np.float32), allow_pickle=False)
2021-08-03 18:10:39 +08:00
phone_ids = [vocab_phones[p] for p in item['phones']]
2021-08-24 19:58:48 +08:00
spk_id = vocab_speaker[item["speaker"]]
record = {
"utt_id": item['utt_id'],
2021-08-24 19:58:48 +08:00
"spk_id": spk_id,
"text": phone_ids,
"text_lengths": item['text_lengths'],
"speech_lengths": item['speech_lengths'],
"durations": item['durations'],
"speech": str(speech_path),
"pitch": str(pitch_path),
"energy": str(energy_path)
}
output_metadata.append(record)
output_metadata.sort(key=itemgetter('utt_id'))
output_metadata_path = Path(args.dumpdir) / "metadata.jsonl"
with jsonlines.open(output_metadata_path, 'w') as writer:
for item in output_metadata:
writer.write(item)
logging.info(f"metadata dumped into {output_metadata_path}")
if __name__ == "__main__":
main()