Parakeet/examples/transformer_tts/synthesis.py

273 lines
9.8 KiB
Python
Raw Normal View History

2020-02-26 21:03:51 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2019-12-16 17:04:22 +08:00
import os
from scipy.io.wavfile import write
import numpy as np
from tqdm import tqdm
from matplotlib import cm
2019-12-16 17:04:22 +08:00
from tensorboardX import SummaryWriter
2020-02-13 14:48:21 +08:00
from ruamel import yaml
2019-12-16 17:04:22 +08:00
from pathlib import Path
2020-02-13 14:48:21 +08:00
import argparse
2019-12-16 17:04:22 +08:00
from pprint import pprint
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
from parakeet.g2p.en import text_to_sequence
from parakeet.models.transformer_tts.utils import *
2020-01-22 15:46:35 +08:00
from parakeet import audio
from parakeet.models.transformer_tts import Vocoder
from parakeet.models.transformer_tts import TransformerTTS
from parakeet.modules import weight_norm
from parakeet.models.waveflow import WaveFlowModule
from parakeet.modules.weight_norm import WeightNormWrapper
from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWavenet
from parakeet.utils import io
def add_config_options_to_parser(parser):
parser.add_argument("--config", type=str, help="path of the config file")
parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
parser.add_argument(
"--max_len",
type=int,
default=200,
help="The max length of audio when synthsis.")
parser.add_argument(
"--checkpoint_transformer",
type=str,
help="transformer_tts checkpoint to synthesis")
parser.add_argument(
"--vocoder",
type=str,
default="griffinlim",
choices=['griffinlim', 'wavenet', 'waveflow'],
help="vocoder method")
parser.add_argument(
"--config_vocoder", type=str, help="path of the vocoder config file")
parser.add_argument(
"--checkpoint_vocoder",
type=str,
help="vocoder checkpoint to synthesis")
parser.add_argument(
"--output",
type=str,
default="synthesis",
help="path to save experiment results")
2019-12-16 17:04:22 +08:00
2020-02-26 21:03:51 +08:00
2020-02-13 14:48:21 +08:00
def synthesis(text_input, args):
local_rank = dg.parallel.Env().local_rank
place = (fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace())
2020-02-13 14:48:21 +08:00
with open(args.config) as f:
2020-02-13 14:48:21 +08:00
cfg = yaml.load(f, Loader=yaml.Loader)
2019-12-16 17:04:22 +08:00
# tensorboard
if not os.path.exists(args.output):
os.mkdir(args.output)
2019-12-16 17:04:22 +08:00
writer = SummaryWriter(os.path.join(args.output, 'log'))
2019-12-16 17:04:22 +08:00
fluid.enable_dygraph(place)
with fluid.unique_name.guard():
network_cfg = cfg['network']
model = TransformerTTS(
network_cfg['embedding_size'], network_cfg['hidden_size'],
network_cfg['encoder_num_head'], network_cfg['encoder_n_layers'],
cfg['audio']['num_mels'], network_cfg['outputs_per_step'],
network_cfg['decoder_num_head'], network_cfg['decoder_n_layers'])
# Load parameters.
global_step = io.load_parameters(
model=model, checkpoint_path=args.checkpoint_transformer)
model.eval()
# init input
text = np.asarray(text_to_sequence(text_input))
text = fluid.layers.unsqueeze(dg.to_variable(text).astype(np.int64), [0])
mel_input = dg.to_variable(np.zeros([1, 1, 80])).astype(np.float32)
pos_text = np.arange(1, text.shape[1] + 1)
pos_text = fluid.layers.unsqueeze(
dg.to_variable(pos_text).astype(np.int64), [0])
pbar = tqdm(range(args.max_len))
for i in pbar:
pos_mel = np.arange(1, mel_input.shape[1] + 1)
pos_mel = fluid.layers.unsqueeze(
dg.to_variable(pos_mel).astype(np.int64), [0])
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
text, mel_input, pos_text, pos_mel)
mel_input = fluid.layers.concat(
[mel_input, postnet_pred[:, -1:, :]], axis=1)
global_step = 0
for i, prob in enumerate(attn_probs):
for j in range(4):
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
writer.add_image(
'Attention_%d_0' % global_step,
x,
i * 4 + j,
dataformats="HWC")
_ljspeech_processor = audio.AudioProcessor(
sample_rate=cfg['audio']['sr'],
num_mels=cfg['audio']['num_mels'],
min_level_db=cfg['audio']['min_level_db'],
ref_level_db=cfg['audio']['ref_level_db'],
n_fft=cfg['audio']['n_fft'],
win_length=cfg['audio']['win_length'],
hop_length=cfg['audio']['hop_length'],
power=cfg['audio']['power'],
preemphasis=cfg['audio']['preemphasis'],
signal_norm=True,
symmetric_norm=False,
max_norm=1.,
mel_fmin=0,
mel_fmax=8000,
clip_norm=True,
griffin_lim_iters=60,
do_trim_silence=False,
sound_norm=False)
if args.vocoder == 'griffinlim':
#synthesis use griffin-lim
wav = synthesis_with_griffinlim(postnet_pred, _ljspeech_processor)
elif args.vocoder == 'wavenet':
# synthesis use wavenet
wav = synthesis_with_wavenet(postnet_pred, args)
elif args.vocoder == 'waveflow':
# synthesis use waveflow
wav = synthesis_with_waveflow(postnet_pred, args,
args.checkpoint_vocoder,
_ljspeech_processor, place)
else:
print(
'vocoder error, we only support griffinlim, cbhg and waveflow, but recevied %s.'
% args.vocoder)
writer.add_audio(text_input + '(' + args.vocoder + ')', wav, 0,
cfg['audio']['sr'])
if not os.path.exists(os.path.join(args.output, 'samples')):
os.mkdir(os.path.join(args.output, 'samples'))
write(
os.path.join(
os.path.join(args.output, 'samples'), args.vocoder + '.wav'),
cfg['audio']['sr'], wav)
print("Synthesis completed !!!")
writer.close()
def synthesis_with_griffinlim(mel_output, _ljspeech_processor):
# synthesis with griffin-lim
mel_output = fluid.layers.transpose(
fluid.layers.squeeze(mel_output, [0]), [1, 0])
mel_output = np.exp(mel_output.numpy())
basis = librosa.filters.mel(22050, 1024, 80, fmin=0, fmax=8000)
inv_basis = np.linalg.pinv(basis)
spec = np.maximum(1e-10, np.dot(inv_basis, mel_output))
wav = librosa.core.griffinlim(spec**1.2, hop_length=256, win_length=1024)
return wav
def synthesis_with_wavenet(mel_output, args):
with open(args.config_vocoder, 'rt') as f:
config = yaml.safe_load(f)
n_mels = config["data"]["n_mels"]
model_config = config["model"]
filter_size = model_config["filter_size"]
upsampling_factors = model_config["upsampling_factors"]
encoder = UpsampleNet(upsampling_factors)
n_loop = model_config["n_loop"]
n_layer = model_config["n_layer"]
residual_channels = model_config["residual_channels"]
output_dim = model_config["output_dim"]
loss_type = model_config["loss_type"]
log_scale_min = model_config["log_scale_min"]
decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim, n_mels,
filter_size, loss_type, log_scale_min)
model = ConditionalWavenet(encoder, decoder)
# load model parameters
iteration = io.load_parameters(
model, checkpoint_path=args.checkpoint_vocoder)
for layer in model.sublayers():
if isinstance(layer, WeightNormWrapper):
layer.remove_weight_norm()
mel_output = fluid.layers.transpose(mel_output, [0, 2, 1])
wav = model.synthesis(mel_output)
return wav.numpy()[0]
def synthesis_with_cbhg(mel_output, _ljspeech_processor, cfg):
with fluid.unique_name.guard():
model_vocoder = Vocoder(
cfg['train']['batch_size'], cfg['vocoder']['hidden_size'],
cfg['audio']['num_mels'], cfg['audio']['n_fft'])
# Load parameters.
global_step = io.load_parameters(
model=model_vocoder, checkpoint_path=args.checkpoint_vocoder)
model_vocoder.eval()
mag_pred = model_vocoder(mel_output)
# synthesis with cbhg
wav = _ljspeech_processor.inv_spectrogram(
fluid.layers.transpose(fluid.layers.squeeze(mag_pred, [0]), [1, 0])
.numpy())
return wav
def synthesis_with_waveflow(mel_output, args, checkpoint, _ljspeech_processor,
place):
mel_output = fluid.layers.transpose(
fluid.layers.squeeze(mel_output, [0]), [1, 0])
mel_output = mel_output.numpy()
#mel_output = (mel_output - mel_output.min())/(mel_output.max() - mel_output.min())
#mel_output = 5 * mel_output - 4
#mel_output = np.log(10) * mel_output
fluid.enable_dygraph(place)
args.config = args.config_vocoder
args.use_fp16 = False
config = io.add_yaml_config_to_args(args)
mel_spectrogram = dg.to_variable(mel_output)
mel_spectrogram = fluid.layers.unsqueeze(mel_spectrogram, [0])
# Build model.
waveflow = WaveFlowModule(config)
io.load_parameters(model=waveflow, checkpoint_path=checkpoint)
for layer in waveflow.sublayers():
if isinstance(layer, weight_norm.WeightNormWrapper):
layer.remove_weight_norm()
# Run model inference.
wav = waveflow.synthesize(mel_spectrogram, sigma=config.sigma)
return wav.numpy()[0]
2019-12-16 17:04:22 +08:00
2020-02-26 21:03:51 +08:00
2019-12-16 17:04:22 +08:00
if __name__ == '__main__':
2020-02-13 14:48:21 +08:00
parser = argparse.ArgumentParser(description="Synthesis model")
2019-12-16 17:04:22 +08:00
add_config_options_to_parser(parser)
2020-02-13 14:48:21 +08:00
args = parser.parse_args()
# Print the whole config setting.
pprint(vars(args))
synthesis(
"Life was like a box of chocolates, you never know what you're gonna get.",
args)