Parakeet/examples/ge2e/config.py

63 lines
2.2 KiB
Python
Raw Normal View History

add ge2e and tacotron2_aishell3 example (#107) * hacky thing, add tone support for acoustic model * fix experiments for waveflow and wavenet, only write visual log in rank-0 * use emb add in tacotron2 * 1. remove space from numericalized representation; 2. fix decoder paddign mask's unsqueeze dim. * remove bn in postnet * refactoring code * add an option to normalize volume when loading audio. * add an embedding layer. * 1. change the default min value of LogMagnitude to 1e-5; 2. remove stop logit prediction from tacotron2 model. * WIP: baker * add ge2e * fix lstm speaker encoder * fix lstm speaker encoder * fix speaker encoder and add support for 2 more datasets * simplify visualization code * add a simple strategy to support multispeaker for tacotron. * add vctk example for refactored tacotron * fix indentation * fix class name * fix visualizer * fix root path * fix root path * fix root path * fix typos * fix bugs * fix text log extention name * add example for baker and aishell3 * update experiment and display * format code for tacotron_vctk, add plot_waveform to display * add new trainer * minor fix * add global condition support for tacotron2 * add gst layer * add 2 frontend * fix fmax for example/waveflow * update collate function, data loader not does not convert nested list into numpy array. * WIP: add hifigan * WIP:update hifigan * change stft to use conv1d * add audio datasets * change batch_text_id, batch_spec, batch_wav to include valid lengths in the returned value * change wavenet to use on-the-fly prepeocessing * fix typos * resolve conflict * remove imports that are removed * remove files not included in this release * remove imports to deleted modules * move tacotron2_msp * clean code * fix argument order * fix argument name * clean code for data processing * WIP: add README * add more details to thr README, fix some preprocess scripts * add voice cloning notebook * add an optional to alter the loss and model structure of tacotron2, add an alternative config * add plot_multiple_attentions and update visualization code in transformer_tts * format code * remove tacotron2_msp * update tacotron2 from_pretrained, update setup.py * update tacotron2 * update tacotron_aishell3's README * add images for exampels/tacotron2_aishell3's README * update README for examples/ge2e * add STFT back * add extra_config keys into the default config of tacotron * fix typos and docs * update README and doc * update docstrings for tacotron * update doc * update README * add links to downlaod pretrained models * refine READMEs and clean code * add praatio into requirements for running the experiments * format code with pre-commit * simplify text processing code and update notebook
2021-05-13 17:49:50 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from yacs.config import CfgNode
_C = CfgNode()
data_config = _C.data = CfgNode()
## Audio volume normalization
data_config.audio_norm_target_dBFS = -30
## Audio sample rate
data_config.sampling_rate = 16000 # Hz
## Voice Activation Detection
# Window size of the VAD. Must be either 10, 20 or 30 milliseconds.
# This sets the granularity of the VAD. Should not need to be changed.
data_config.vad_window_length = 30 # In milliseconds
# Number of frames to average together when performing the moving average smoothing.
# The larger this value, the larger the VAD variations must be to not get smoothed out.
data_config.vad_moving_average_width = 8
# Maximum number of consecutive silent frames a segment can have.
data_config.vad_max_silence_length = 6
## Mel-filterbank
data_config.mel_window_length = 25 # In milliseconds
data_config.mel_window_step = 10 # In milliseconds
data_config.n_mels = 40 # mel bands
# Number of spectrogram frames in a partial utterance
data_config.partial_n_frames = 160 # 1600 ms
data_config.min_pad_coverage = 0.75 # at least 75% of the audio is valid in a partial
data_config.partial_overlap_ratio = 0.5 # overlap ratio between ajancent partials
model_config = _C.model = CfgNode()
model_config.num_layers = 3
model_config.hidden_size = 256
model_config.embedding_size = 256 # output size
training_config = _C.training = CfgNode()
training_config.learning_rate_init = 1e-4
training_config.speakers_per_batch = 64
training_config.utterances_per_speaker = 10
training_config.max_iteration = 1560000
training_config.save_interval = 10000
training_config.valid_interval = 10000
def get_cfg_defaults():
return _C.clone()