2019-12-16 17:04:22 +08:00
|
|
|
import os
|
|
|
|
from scipy.io.wavfile import write
|
|
|
|
from parakeet.g2p.en import text_to_sequence
|
|
|
|
import numpy as np
|
|
|
|
from tqdm import tqdm
|
|
|
|
from tensorboardX import SummaryWriter
|
2020-02-13 14:48:21 +08:00
|
|
|
from ruamel import yaml
|
2019-12-16 17:04:22 +08:00
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.dygraph as dg
|
|
|
|
from pathlib import Path
|
2020-02-13 14:48:21 +08:00
|
|
|
import argparse
|
2019-12-16 17:04:22 +08:00
|
|
|
from parse import add_config_options_to_parser
|
|
|
|
from pprint import pprint
|
2020-01-22 15:46:35 +08:00
|
|
|
from collections import OrderedDict
|
|
|
|
from parakeet import audio
|
2020-02-13 14:48:21 +08:00
|
|
|
from parakeet.models.transformer_tts.vocoder import Vocoder
|
2020-02-13 20:46:21 +08:00
|
|
|
from parakeet.models.transformer_tts.transformer_tts import TransformerTTS
|
2019-12-16 17:04:22 +08:00
|
|
|
|
|
|
|
def load_checkpoint(step, model_path):
|
2020-01-22 15:46:35 +08:00
|
|
|
model_dict, _ = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
|
|
|
|
new_state_dict = OrderedDict()
|
|
|
|
for param in model_dict:
|
|
|
|
if param.startswith('_layers.'):
|
|
|
|
new_state_dict[param[8:]] = model_dict[param]
|
|
|
|
else:
|
|
|
|
new_state_dict[param] = model_dict[param]
|
|
|
|
return new_state_dict
|
2019-12-16 17:04:22 +08:00
|
|
|
|
2020-02-13 14:48:21 +08:00
|
|
|
def synthesis(text_input, args):
|
|
|
|
place = (fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace())
|
|
|
|
|
|
|
|
with open(args.config_path) as f:
|
|
|
|
cfg = yaml.load(f, Loader=yaml.Loader)
|
2019-12-16 17:04:22 +08:00
|
|
|
|
|
|
|
# tensorboard
|
2020-02-13 14:48:21 +08:00
|
|
|
if not os.path.exists(args.log_dir):
|
|
|
|
os.mkdir(args.log_dir)
|
|
|
|
path = os.path.join(args.log_dir,'synthesis')
|
2019-12-16 17:04:22 +08:00
|
|
|
|
|
|
|
writer = SummaryWriter(path)
|
|
|
|
|
|
|
|
with dg.guard(place):
|
2020-01-15 14:10:27 +08:00
|
|
|
with fluid.unique_name.guard():
|
|
|
|
model = TransformerTTS(cfg)
|
2020-02-18 11:49:36 +08:00
|
|
|
model.set_dict(load_checkpoint(str(args.transformer_step), os.path.join(args.checkpoint_path, "transformer")))
|
2020-01-15 14:10:27 +08:00
|
|
|
model.eval()
|
|
|
|
|
|
|
|
with fluid.unique_name.guard():
|
2020-02-18 11:49:36 +08:00
|
|
|
model_vocoder = Vocoder(cfg, args.batch_size)
|
|
|
|
model_vocoder.set_dict(load_checkpoint(str(args.vocoder_step), os.path.join(args.checkpoint_path, "vocoder")))
|
|
|
|
model_vocoder.eval()
|
2019-12-16 17:04:22 +08:00
|
|
|
# init input
|
|
|
|
text = np.asarray(text_to_sequence(text_input))
|
|
|
|
text = fluid.layers.unsqueeze(dg.to_variable(text),[0])
|
|
|
|
mel_input = dg.to_variable(np.zeros([1,1,80])).astype(np.float32)
|
|
|
|
pos_text = np.arange(1, text.shape[1]+1)
|
|
|
|
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text),[0])
|
|
|
|
|
|
|
|
|
2020-02-13 14:48:21 +08:00
|
|
|
pbar = tqdm(range(args.max_len))
|
2019-12-16 17:04:22 +08:00
|
|
|
|
|
|
|
for i in pbar:
|
|
|
|
pos_mel = np.arange(1, mel_input.shape[1]+1)
|
|
|
|
pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel),[0])
|
|
|
|
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(text, mel_input, pos_text, pos_mel)
|
|
|
|
mel_input = fluid.layers.concat([mel_input, postnet_pred[:,-1:,:]], axis=1)
|
2020-02-18 11:49:36 +08:00
|
|
|
mag_pred = model_vocoder(postnet_pred)
|
2019-12-16 17:04:22 +08:00
|
|
|
|
2020-01-22 15:46:35 +08:00
|
|
|
_ljspeech_processor = audio.AudioProcessor(
|
2020-02-13 14:48:21 +08:00
|
|
|
sample_rate=cfg['audio']['sr'],
|
|
|
|
num_mels=cfg['audio']['num_mels'],
|
|
|
|
min_level_db=cfg['audio']['min_level_db'],
|
|
|
|
ref_level_db=cfg['audio']['ref_level_db'],
|
|
|
|
n_fft=cfg['audio']['n_fft'],
|
|
|
|
win_length= cfg['audio']['win_length'],
|
|
|
|
hop_length= cfg['audio']['hop_length'],
|
|
|
|
power=cfg['audio']['power'],
|
|
|
|
preemphasis=cfg['audio']['preemphasis'],
|
2020-01-22 15:46:35 +08:00
|
|
|
signal_norm=True,
|
|
|
|
symmetric_norm=False,
|
|
|
|
max_norm=1.,
|
|
|
|
mel_fmin=0,
|
|
|
|
mel_fmax=None,
|
|
|
|
clip_norm=True,
|
|
|
|
griffin_lim_iters=60,
|
|
|
|
do_trim_silence=False,
|
|
|
|
sound_norm=False)
|
|
|
|
|
2019-12-16 17:04:22 +08:00
|
|
|
wav = _ljspeech_processor.inv_spectrogram(fluid.layers.transpose(fluid.layers.squeeze(mag_pred,[0]), [1,0]).numpy())
|
2020-02-13 14:48:21 +08:00
|
|
|
writer.add_audio(text_input, wav, 0, cfg['audio']['sr'])
|
|
|
|
if not os.path.exists(args.sample_path):
|
|
|
|
os.mkdir(args.sample_path)
|
|
|
|
write(os.path.join(args.sample_path,'test.wav'), cfg['audio']['sr'], wav)
|
2020-01-22 15:46:35 +08:00
|
|
|
writer.close()
|
2019-12-16 17:04:22 +08:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2020-02-13 14:48:21 +08:00
|
|
|
parser = argparse.ArgumentParser(description="Synthesis model")
|
2019-12-16 17:04:22 +08:00
|
|
|
add_config_options_to_parser(parser)
|
2020-02-13 14:48:21 +08:00
|
|
|
args = parser.parse_args()
|
|
|
|
synthesis("Transformer model is so fast!", args)
|