Parakeet/parakeet/audio/spec_normalizer.py

75 lines
2.3 KiB
Python
Raw Normal View History

2020-12-20 13:15:07 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-10-10 15:51:54 +08:00
"""
This modules contains normalizers for spectrogram magnitude.
Normalizers are invertible transformations. They can be used to process
magnitude of spectrogram before training and can also be used to recover from
the generated spectrogram so as to be used with vocoders like griffin lim.
The base class describe the interface. `transform` is used to perform
transformation and `inverse` is used to perform the inverse transformation.
check issues:
https://github.com/mozilla/TTS/issues/377
2020-10-10 15:51:54 +08:00
"""
import numpy as np
__all__ = ["NormalizerBase", "LogMagnitude", "UnitMagnitude"]
2020-10-10 15:51:54 +08:00
class NormalizerBase(object):
def transform(self, spec):
raise NotImplementedError("transform must be implemented")
2020-12-20 13:15:07 +08:00
2020-10-10 15:51:54 +08:00
def inverse(self, normalized):
raise NotImplementedError("inverse must be implemented")
2020-12-20 13:15:07 +08:00
2020-10-10 15:51:54 +08:00
class LogMagnitude(NormalizerBase):
"""
This is a simple normalizer used in Waveglow, Waveflow, tacotron2...
"""
2020-12-20 13:15:07 +08:00
add ge2e and tacotron2_aishell3 example (#107) * hacky thing, add tone support for acoustic model * fix experiments for waveflow and wavenet, only write visual log in rank-0 * use emb add in tacotron2 * 1. remove space from numericalized representation; 2. fix decoder paddign mask's unsqueeze dim. * remove bn in postnet * refactoring code * add an option to normalize volume when loading audio. * add an embedding layer. * 1. change the default min value of LogMagnitude to 1e-5; 2. remove stop logit prediction from tacotron2 model. * WIP: baker * add ge2e * fix lstm speaker encoder * fix lstm speaker encoder * fix speaker encoder and add support for 2 more datasets * simplify visualization code * add a simple strategy to support multispeaker for tacotron. * add vctk example for refactored tacotron * fix indentation * fix class name * fix visualizer * fix root path * fix root path * fix root path * fix typos * fix bugs * fix text log extention name * add example for baker and aishell3 * update experiment and display * format code for tacotron_vctk, add plot_waveform to display * add new trainer * minor fix * add global condition support for tacotron2 * add gst layer * add 2 frontend * fix fmax for example/waveflow * update collate function, data loader not does not convert nested list into numpy array. * WIP: add hifigan * WIP:update hifigan * change stft to use conv1d * add audio datasets * change batch_text_id, batch_spec, batch_wav to include valid lengths in the returned value * change wavenet to use on-the-fly prepeocessing * fix typos * resolve conflict * remove imports that are removed * remove files not included in this release * remove imports to deleted modules * move tacotron2_msp * clean code * fix argument order * fix argument name * clean code for data processing * WIP: add README * add more details to thr README, fix some preprocess scripts * add voice cloning notebook * add an optional to alter the loss and model structure of tacotron2, add an alternative config * add plot_multiple_attentions and update visualization code in transformer_tts * format code * remove tacotron2_msp * update tacotron2 from_pretrained, update setup.py * update tacotron2 * update tacotron_aishell3's README * add images for exampels/tacotron2_aishell3's README * update README for examples/ge2e * add STFT back * add extra_config keys into the default config of tacotron * fix typos and docs * update README and doc * update docstrings for tacotron * update doc * update README * add links to downlaod pretrained models * refine READMEs and clean code * add praatio into requirements for running the experiments * format code with pre-commit * simplify text processing code and update notebook
2021-05-13 17:49:50 +08:00
def __init__(self, min=1e-5):
2020-10-10 15:51:54 +08:00
self.min = min
2020-12-20 13:15:07 +08:00
2020-10-10 15:51:54 +08:00
def transform(self, x):
x = np.maximum(x, self.min)
x = np.log(x)
return x
2020-12-20 13:15:07 +08:00
2020-10-10 15:51:54 +08:00
def inverse(self, x):
return np.exp(x)
2020-10-10 15:51:54 +08:00
class UnitMagnitude(NormalizerBase):
# dbscale and (0, 1) normalization
"""
This is the normalizer used in the
"""
2020-12-20 13:15:07 +08:00
2020-11-19 20:17:42 +08:00
def __init__(self, min=1e-5):
self.min = min
2020-12-20 13:15:07 +08:00
2020-11-19 20:17:42 +08:00
def transform(self, x):
db_scale = 20 * np.log10(np.maximum(self.min, x)) - 20
normalized = (db_scale + 100) / 100
clipped = np.clip(normalized, 0, 1)
return clipped
2020-12-20 13:15:07 +08:00
2020-11-19 20:17:42 +08:00
def inverse(self, x):
denormalized = np.clip(x, 0, 1) * 100 - 100
out = np.exp((denormalized + 20) / 20 * np.log(10))
return out