2021-06-10 04:08:05 +08:00
|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
from paddle import nn
|
|
|
|
from paddle.nn import functional as F
|
|
|
|
|
|
|
|
from parakeet.modules.audio import STFT
|
|
|
|
|
|
|
|
|
|
|
|
class SpectralConvergenceLoss(nn.Layer):
|
|
|
|
"""Spectral convergence loss module."""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
"""Initilize spectral convergence loss module."""
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def forward(self, x_mag, y_mag):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
|
|
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, C, T).
|
|
|
|
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, C, T).
|
|
|
|
Returns:
|
|
|
|
Tensor: Spectral convergence loss value.
|
|
|
|
"""
|
|
|
|
return paddle.norm(
|
|
|
|
y_mag - x_mag, p="fro") / paddle.norm(
|
|
|
|
y_mag, p="fro")
|
|
|
|
|
|
|
|
|
|
|
|
class LogSTFTMagnitudeLoss(nn.Layer):
|
|
|
|
"""Log STFT magnitude loss module."""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
"""Initilize los STFT magnitude loss module."""
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def forward(self, x_mag, y_mag):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
|
|
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
|
|
|
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
|
|
|
Returns:
|
|
|
|
Tensor: Log STFT magnitude loss value.
|
|
|
|
"""
|
|
|
|
return F.l1_loss(paddle.log(y_mag), paddle.log(x_mag))
|
|
|
|
|
|
|
|
|
|
|
|
class STFTLoss(nn.Layer):
|
|
|
|
"""STFT loss module."""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
fft_size=1024,
|
|
|
|
shift_size=120,
|
|
|
|
win_length=600,
|
2021-06-16 17:40:47 +08:00
|
|
|
window="hann"):
|
2021-06-10 04:08:05 +08:00
|
|
|
"""Initialize STFT loss module."""
|
|
|
|
super().__init__()
|
|
|
|
self.fft_size = fft_size
|
|
|
|
self.shift_size = shift_size
|
|
|
|
self.win_length = win_length
|
|
|
|
self.stft = STFT(
|
|
|
|
n_fft=fft_size,
|
|
|
|
hop_length=shift_size,
|
|
|
|
win_length=win_length,
|
|
|
|
window=window)
|
|
|
|
self.spectral_convergence_loss = SpectralConvergenceLoss()
|
|
|
|
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
|
|
|
|
|
|
|
|
def forward(self, x, y):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
|
|
x (Tensor): Predicted signal (B, T).
|
|
|
|
y (Tensor): Groundtruth signal (B, T).
|
|
|
|
Returns:
|
|
|
|
Tensor: Spectral convergence loss value.
|
|
|
|
Tensor: Log STFT magnitude loss value.
|
|
|
|
"""
|
|
|
|
x_mag = self.stft.magnitude(x)
|
|
|
|
y_mag = self.stft.magnitude(y)
|
|
|
|
sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
|
|
|
|
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
|
|
|
|
|
|
|
|
return sc_loss, mag_loss
|
|
|
|
|
|
|
|
|
|
|
|
class MultiResolutionSTFTLoss(nn.Layer):
|
|
|
|
"""Multi resolution STFT loss module."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
fft_sizes=[1024, 2048, 512],
|
|
|
|
hop_sizes=[120, 240, 50],
|
|
|
|
win_lengths=[600, 1200, 240],
|
|
|
|
window="hann", ):
|
|
|
|
"""Initialize Multi resolution STFT loss module.
|
|
|
|
Args:
|
|
|
|
fft_sizes (list): List of FFT sizes.
|
|
|
|
hop_sizes (list): List of hop sizes.
|
|
|
|
win_lengths (list): List of window lengths.
|
|
|
|
window (str): Window function type.
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
|
|
|
|
self.stft_losses = nn.LayerList()
|
|
|
|
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
|
|
|
self.stft_losses.append(STFTLoss(fs, ss, wl, window))
|
|
|
|
|
|
|
|
def forward(self, x, y):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
|
|
x (Tensor): Predicted signal (B, T).
|
|
|
|
y (Tensor): Groundtruth signal (B, T).
|
|
|
|
Returns:
|
|
|
|
Tensor: Multi resolution spectral convergence loss value.
|
|
|
|
Tensor: Multi resolution log STFT magnitude loss value.
|
|
|
|
"""
|
|
|
|
sc_loss = 0.0
|
|
|
|
mag_loss = 0.0
|
|
|
|
for f in self.stft_losses:
|
|
|
|
sc_l, mag_l = f(x, y)
|
|
|
|
sc_loss += sc_l
|
|
|
|
mag_loss += mag_l
|
|
|
|
sc_loss /= len(self.stft_losses)
|
|
|
|
mag_loss /= len(self.stft_losses)
|
|
|
|
|
|
|
|
return sc_loss, mag_loss
|