64 lines
2.5 KiB
Python
64 lines
2.5 KiB
Python
|
import unittest
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
|
||
|
from parakeet.modules import positional_encoding as pe
|
||
|
|
||
|
def positional_encoding(start_index, length, size, dtype="float32"):
|
||
|
if (size % 2 != 0):
|
||
|
raise ValueError("size should be divisible by 2")
|
||
|
channel = np.arange(0, size, 2, dtype=dtype)
|
||
|
index = np.arange(start_index, start_index + length, 1, dtype=dtype)
|
||
|
p = np.expand_dims(index, -1) / (10000 ** (channel / float(size)))
|
||
|
encodings = np.concatenate([np.sin(p), np.cos(p)], axis=-1)
|
||
|
return encodings
|
||
|
|
||
|
def scalable_positional_encoding(start_index, length, size, omega):
|
||
|
dtype = omega.dtype
|
||
|
index = np.arange(start_index, start_index + length, 1, dtype=dtype)
|
||
|
channel = np.arange(0, size, 2, dtype=dtype)
|
||
|
|
||
|
p = np.reshape(omega, omega.shape + (1, 1)) \
|
||
|
* np.expand_dims(index, -1) \
|
||
|
/ (10000 ** (channel / float(size)))
|
||
|
|
||
|
encodings = np.concatenate([np.sin(p), np.cos(p)], axis=-1)
|
||
|
return encodings
|
||
|
|
||
|
class TestPositionEncoding(unittest.TestCase):
|
||
|
def __init__(self, start=0, length=20, size=16, dtype="float64"):
|
||
|
super(TestPositionEncoding, self).__init__("runTest")
|
||
|
self.spec = (start, length, size, dtype)
|
||
|
|
||
|
def test_equality(self):
|
||
|
start, length, size, dtype = self.spec
|
||
|
position_embed1 = positional_encoding(start, length, size, dtype)
|
||
|
position_embed2 = pe.positional_encoding(start, length, size, dtype)
|
||
|
np.testing.assert_allclose(position_embed2.numpy(), position_embed1)
|
||
|
|
||
|
def runTest(self):
|
||
|
paddle.disable_static(paddle.CPUPlace())
|
||
|
self.test_equality()
|
||
|
|
||
|
class TestScalablePositionEncoding(unittest.TestCase):
|
||
|
def __init__(self, start=0, length=20, size=16, dtype="float64"):
|
||
|
super(TestScalablePositionEncoding, self).__init__("runTest")
|
||
|
self.spec = (start, length, size, dtype)
|
||
|
|
||
|
def test_equality(self):
|
||
|
start, length, size, dtype = self.spec
|
||
|
omega = np.random.uniform(1, 2, size=(4,)).astype(dtype)
|
||
|
position_embed1 = scalable_positional_encoding(start, length, size, omega)
|
||
|
position_embed2 = pe.scalable_positional_encoding(start, length, size, paddle.to_tensor(omega))
|
||
|
np.testing.assert_allclose(position_embed2.numpy(), position_embed1)
|
||
|
|
||
|
def runTest(self):
|
||
|
paddle.disable_static(paddle.CPUPlace())
|
||
|
self.test_equality()
|
||
|
|
||
|
|
||
|
def load_tests(loader, standard_tests, pattern):
|
||
|
suite = unittest.TestSuite()
|
||
|
suite.addTest(TestPositionEncoding(0, 20, 16, "float64"))
|
||
|
suite.addTest(TestScalablePositionEncoding(0, 20, 16))
|
||
|
return suite
|