Parakeet/tests/test_raise.py

58 lines
1.9 KiB
Python
Raw Normal View History

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle
from paddle import Tensor
from paddle.static import InputSpec
from paddle.nn import functional as F
def sinusoid_position_encoding(num_positions: int,
feature_size: int,
omega: float=1.0,
start_pos: int=0,
dtype=None) -> paddle.Tensor:
# return tensor shape (num_positions, feature_size)
if (feature_size % 2 != 0):
raise ValueError("size should be divisible by 2")
dtype = dtype or paddle.get_default_dtype()
channel = paddle.arange(0, feature_size, 2, dtype=dtype)
index = paddle.arange(start_pos, start_pos + num_positions, 1, dtype=dtype)
p = (paddle.unsqueeze(index, -1) *
omega) / (10000.0**(channel / float(feature_size)))
encodings = paddle.zeros([num_positions, feature_size], dtype=dtype)
encodings[:, 0::2] = paddle.sin(p)
encodings[:, 1::2] = paddle.cos(p)
return encodings
def call_it(x):
shape = paddle.shape(x)
a = shape[0]
b = shape[1]
c = sinusoid_position_encoding(a, b)
return c
call_it(paddle.randn([8, 32]))
m = paddle.jit.to_static(
call_it, input_spec=[InputSpec(
[-1, -1], dtype=paddle.int32)])
m(paddle.randn([8, 32]).astype(paddle.int32))