Parakeet/examples/ge2e/preprocess.py

101 lines
3.9 KiB
Python
Raw Normal View History

add ge2e and tacotron2_aishell3 example (#107) * hacky thing, add tone support for acoustic model * fix experiments for waveflow and wavenet, only write visual log in rank-0 * use emb add in tacotron2 * 1. remove space from numericalized representation; 2. fix decoder paddign mask's unsqueeze dim. * remove bn in postnet * refactoring code * add an option to normalize volume when loading audio. * add an embedding layer. * 1. change the default min value of LogMagnitude to 1e-5; 2. remove stop logit prediction from tacotron2 model. * WIP: baker * add ge2e * fix lstm speaker encoder * fix lstm speaker encoder * fix speaker encoder and add support for 2 more datasets * simplify visualization code * add a simple strategy to support multispeaker for tacotron. * add vctk example for refactored tacotron * fix indentation * fix class name * fix visualizer * fix root path * fix root path * fix root path * fix typos * fix bugs * fix text log extention name * add example for baker and aishell3 * update experiment and display * format code for tacotron_vctk, add plot_waveform to display * add new trainer * minor fix * add global condition support for tacotron2 * add gst layer * add 2 frontend * fix fmax for example/waveflow * update collate function, data loader not does not convert nested list into numpy array. * WIP: add hifigan * WIP:update hifigan * change stft to use conv1d * add audio datasets * change batch_text_id, batch_spec, batch_wav to include valid lengths in the returned value * change wavenet to use on-the-fly prepeocessing * fix typos * resolve conflict * remove imports that are removed * remove files not included in this release * remove imports to deleted modules * move tacotron2_msp * clean code * fix argument order * fix argument name * clean code for data processing * WIP: add README * add more details to thr README, fix some preprocess scripts * add voice cloning notebook * add an optional to alter the loss and model structure of tacotron2, add an alternative config * add plot_multiple_attentions and update visualization code in transformer_tts * format code * remove tacotron2_msp * update tacotron2 from_pretrained, update setup.py * update tacotron2 * update tacotron_aishell3's README * add images for exampels/tacotron2_aishell3's README * update README for examples/ge2e * add STFT back * add extra_config keys into the default config of tacotron * fix typos and docs * update README and doc * update docstrings for tacotron * update doc * update README * add links to downlaod pretrained models * refine READMEs and clean code * add praatio into requirements for running the experiments * format code with pre-commit * simplify text processing code and update notebook
2021-05-13 17:49:50 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
from config import get_cfg_defaults
from audio_processor import SpeakerVerificationPreprocessor
from dataset_processors import (process_librispeech, process_voxceleb1,
process_voxceleb2, process_aidatatang_200zh,
process_magicdata)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="preprocess dataset for speaker verification task")
parser.add_argument(
"--datasets_root",
type=Path,
help="Path to the directory containing your LibriSpeech, LibriTTS and VoxCeleb datasets."
)
parser.add_argument(
"--output_dir", type=Path, help="Path to save processed dataset.")
parser.add_argument(
"--dataset_names",
type=str,
default="librispeech_other,voxceleb1,voxceleb2",
help="comma-separated list of names of the datasets you want to preprocess. only "
"the train set of these datastes will be used. Possible names: librispeech_other, "
"voxceleb1, voxceleb2, aidatatang_200zh, magicdata.")
parser.add_argument(
"--skip_existing",
action="store_true",
help="Whether to skip ouput files with the same name. Useful if this script was interrupted."
)
parser.add_argument(
"--no_trim",
action="store_true",
help="Preprocess audio without trimming silences (not recommended).")
args = parser.parse_args()
if not args.no_trim:
try:
import webrtcvad
except:
raise ModuleNotFoundError(
"Package 'webrtcvad' not found. This package enables "
"noise removal and is recommended. Please install and "
"try again. If installation fails, "
"use --no_trim to disable this error message.")
del args.no_trim
args.datasets = [item.strip() for item in args.dataset_names.split(",")]
if not hasattr(args, "output_dir"):
args.output_dir = args.dataset_root / "SV2TTS" / "encoder"
args.output_dir = args.output_dir.expanduser()
args.datasets_root = args.datasets_root.expanduser()
assert args.datasets_root.exists()
args.output_dir.mkdir(exist_ok=True, parents=True)
config = get_cfg_defaults()
print(args)
c = config.data
processor = SpeakerVerificationPreprocessor(
sampling_rate=c.sampling_rate,
audio_norm_target_dBFS=c.audio_norm_target_dBFS,
vad_window_length=c.vad_window_length,
vad_moving_average_width=c.vad_moving_average_width,
vad_max_silence_length=c.vad_max_silence_length,
mel_window_length=c.mel_window_length,
mel_window_step=c.mel_window_step,
n_mels=c.n_mels,
partial_n_frames=c.partial_n_frames,
min_pad_coverage=c.min_pad_coverage,
partial_overlap_ratio=c.min_pad_coverage, )
preprocess_func = {
"librispeech_other": process_librispeech,
"voxceleb1": process_voxceleb1,
"voxceleb2": process_voxceleb2,
"aidatatang_200zh": process_aidatatang_200zh,
"magicdata": process_magicdata,
}
for dataset in args.datasets:
print("Preprocessing %s" % dataset)
preprocess_func[dataset](processor, args.datasets_root,
args.output_dir, args.skip_existing)