Parakeet/examples/wavenet/data.py

165 lines
5.7 KiB
Python
Raw Normal View History

2020-02-26 23:06:48 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
2020-02-26 23:06:48 +08:00
import csv
import numpy as np
import librosa
from pathlib import Path
import pandas as pd
from parakeet.data import batch_spec, batch_wav
from parakeet.data import DatasetMixin
class LJSpeechMetaData(DatasetMixin):
def __init__(self, root):
self.root = Path(root)
self._wav_dir = self.root.joinpath("wavs")
csv_path = self.root.joinpath("metadata.csv")
self._table = pd.read_csv(
csv_path,
sep="|",
header=None,
quoting=csv.QUOTE_NONE,
names=["fname", "raw_text", "normalized_text"])
def get_example(self, i):
fname, raw_text, normalized_text = self._table.iloc[i]
fname = str(self._wav_dir.joinpath(fname + ".wav"))
return fname, raw_text, normalized_text
def __len__(self):
return len(self._table)
class Transform(object):
def __init__(self, sample_rate, n_fft, win_length, hop_length, n_mels):
self.sample_rate = sample_rate
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.n_mels = n_mels
def __call__(self, example):
wav_path, _, _ = example
sr = self.sample_rate
n_fft = self.n_fft
win_length = self.win_length
hop_length = self.hop_length
n_mels = self.n_mels
wav, loaded_sr = librosa.load(wav_path, sr=None)
assert loaded_sr == sr, "sample rate does not match, resampling applied"
# Pad audio to the right size.
frames = int(np.ceil(float(wav.size) / hop_length))
fft_padding = (n_fft - hop_length) // 2 # sound
desired_length = frames * hop_length + fft_padding * 2
pad_amount = (desired_length - wav.size) // 2
if wav.size % 2 == 0:
wav = np.pad(wav, (pad_amount, pad_amount), mode='reflect')
else:
wav = np.pad(wav, (pad_amount, pad_amount + 1), mode='reflect')
# Normalize audio.
wav = wav / np.abs(wav).max() * 0.999
# Compute mel-spectrogram.
# Turn center to False to prevent internal padding.
spectrogram = librosa.core.stft(
wav,
hop_length=hop_length,
win_length=win_length,
n_fft=n_fft,
center=False)
spectrogram_magnitude = np.abs(spectrogram)
# Compute mel-spectrograms.
mel_filter_bank = librosa.filters.mel(sr=sr,
n_fft=n_fft,
n_mels=n_mels)
mel_spectrogram = np.dot(mel_filter_bank, spectrogram_magnitude)
mel_spectrogram = mel_spectrogram
# Rescale mel_spectrogram.
min_level, ref_level = 1e-5, 20 # hard code it
mel_spectrogram = 20 * np.log10(np.maximum(min_level, mel_spectrogram))
mel_spectrogram = mel_spectrogram - ref_level
mel_spectrogram = np.clip((mel_spectrogram + 100) / 100, 0, 1)
# Extract the center of audio that corresponds to mel spectrograms.
audio = wav[fft_padding:-fft_padding]
assert mel_spectrogram.shape[1] * hop_length == audio.size
# there is no clipping here
return audio, mel_spectrogram
class DataCollector(object):
def __init__(self,
context_size,
sample_rate,
hop_length,
train_clip_seconds,
valid=False):
frames_per_second = sample_rate // hop_length
train_clip_frames = int(
np.ceil(train_clip_seconds * frames_per_second))
context_frames = context_size // hop_length
self.num_frames = train_clip_frames + context_frames
self.sample_rate = sample_rate
self.hop_length = hop_length
self.valid = valid
def random_crop(self, sample):
audio, mel_spectrogram = sample
audio_frames = int(audio.size) // self.hop_length
max_start_frame = audio_frames - self.num_frames
assert max_start_frame >= 0, "audio is too short to be cropped"
frame_start = np.random.randint(0, max_start_frame)
# frame_start = 0 # norandom
frame_end = frame_start + self.num_frames
audio_start = frame_start * self.hop_length
audio_end = frame_end * self.hop_length
audio = audio[audio_start:audio_end]
return audio, mel_spectrogram, audio_start
def __call__(self, samples):
# transform them first
if self.valid:
samples = [(audio, mel_spectrogram, 0)
for audio, mel_spectrogram in samples]
else:
samples = [self.random_crop(sample) for sample in samples]
# batch them
audios = [sample[0] for sample in samples]
audio_starts = [sample[2] for sample in samples]
mels = [sample[1] for sample in samples]
mels = batch_spec(mels)
if self.valid:
audios = batch_wav(audios, dtype=np.float32)
else:
audios = np.array(audios, dtype=np.float32)
audio_starts = np.array(audio_starts, dtype=np.int64)
return audios, mels, audio_starts