Parakeet/parakeet/audio/audio.py

293 lines
11 KiB
Python
Raw Normal View History

2020-02-26 21:03:51 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2019-12-17 14:23:34 +08:00
import librosa
import soundfile as sf
import numpy as np
import scipy.io
import scipy.signal
2020-02-26 21:03:51 +08:00
2019-12-17 14:23:34 +08:00
class AudioProcessor(object):
2020-02-26 21:03:51 +08:00
def __init__(
self,
sample_rate=None, # int, sampling rate
num_mels=None, # int, bands of mel spectrogram
min_level_db=None, # float, minimum level db
ref_level_db=None, # float, reference level db
n_fft=None, # int: number of samples in a frame for stft
win_length=None, # int: the same meaning with n_fft
hop_length=None, # int: number of samples between neighboring frame
power=None, # float:power to raise before griffin-lim
preemphasis=None, # float: preemphasis coefficident
signal_norm=None, #
symmetric_norm=False, # bool, apply clip norm in [-max_norm, max_form]
max_norm=None, # float, max norm
mel_fmin=None, # int: mel spectrogram's minimum frequency
mel_fmax=None, # int: mel spectrogram's maximum frequency
clip_norm=True, # bool: clip spectrogram's norm
griffin_lim_iters=None, # int:
do_trim_silence=False, # bool: trim silence
sound_norm=False,
**kwargs):
2019-12-17 14:23:34 +08:00
self.sample_rate = sample_rate
self.num_mels = num_mels
self.min_level_db = min_level_db
self.ref_level_db = ref_level_db
# stft related
self.n_fft = n_fft
self.win_length = win_length or n_fft
# hop length defaults to 1/4 window_length
2020-02-26 21:03:51 +08:00
self.hop_length = hop_length or 0.25 * self.win_length
2019-12-17 14:23:34 +08:00
self.power = power
self.preemphasis = float(preemphasis)
self.griffin_lim_iters = griffin_lim_iters
self.signal_norm = signal_norm
self.symmetric_norm = symmetric_norm
# mel transform related
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.max_norm = 1.0 if max_norm is None else float(max_norm)
self.clip_norm = clip_norm
self.do_trim_silence = do_trim_silence
self.sound_norm = sound_norm
2020-02-26 21:03:51 +08:00
self.num_freq, self.frame_length_ms, self.frame_shift_ms = self._stft_parameters(
)
2019-12-17 14:23:34 +08:00
def _stft_parameters(self):
"""compute frame length and hop length in ms"""
frame_length_ms = self.win_length * 1. / self.sample_rate
frame_shift_ms = self.hop_length * 1. / self.sample_rate
num_freq = 1 + self.n_fft // 2
return num_freq, frame_length_ms, frame_shift_ms
def __repr__(self):
"""object repr"""
cls_name_str = self.__class__.__name__
members = vars(self)
2020-02-26 21:03:51 +08:00
dict_str = "\n".join(
[" {}: {},".format(k, v) for k, v in members.items()])
2019-12-17 14:23:34 +08:00
repr_str = "{}(\n{})\n".format(cls_name_str, dict_str)
return repr_str
def save_wav(self, path, wav):
"""save audio with scipy.io.wavfile in 16bit integers"""
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
2020-02-26 21:03:51 +08:00
scipy.io.wavfile.write(path, self.sample_rate,
wav_norm.as_type(np.int16))
2019-12-17 14:23:34 +08:00
def load_wav(self, path, sr=None):
"""load wav -> trim_silence -> rescale"""
x, sr = librosa.load(path, sr=None)
2020-02-26 21:03:51 +08:00
assert self.sample_rate == sr, "audio sample rate: {}Hz != processor sample rate: {}Hz".format(
sr, self.sample_rate)
2019-12-17 14:23:34 +08:00
if self.do_trim_silence:
try:
x = self.trim_silence(x)
except ValueError:
2020-02-26 21:03:51 +08:00
print(" [!] File cannot be trimmed for silence - {}".format(
path))
2019-12-17 14:23:34 +08:00
if self.sound_norm:
2020-02-26 21:03:51 +08:00
x = x / x.max() * 0.9 # why 0.9 ?
2019-12-17 14:23:34 +08:00
return x
def trim_silence(self, wav):
"""Trim soilent parts with a threshold and 0.01s margin"""
margin = int(self.sample_rate * 0.01)
2020-02-26 21:03:51 +08:00
wav = wav[margin:-margin]
trimed_wav = librosa.effects.trim(
wav,
top_db=60,
frame_length=self.win_length,
hop_length=self.hop_length)[0]
2019-12-17 14:23:34 +08:00
return trimed_wav
def apply_preemphasis(self, x):
if self.preemphasis == 0.:
2020-02-26 21:03:51 +08:00
raise RuntimeError(
" !! Preemphasis coefficient should be positive. ")
2019-12-17 14:23:34 +08:00
return scipy.signal.lfilter([1., -self.preemphasis], [1.], x)
def apply_inv_preemphasis(self, x):
if self.preemphasis == 0.:
2020-02-26 21:03:51 +08:00
raise RuntimeError(
" !! Preemphasis coefficient should be positive. ")
2019-12-17 14:23:34 +08:00
return scipy.signal.lfilter([1.], [1., -self.preemphasis], x)
def _amplitude_to_db(self, x):
amplitude_min = np.exp(self.min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(amplitude_min, x))
@staticmethod
def _db_to_amplitude(x):
return np.power(10., 0.05 * x)
def _linear_to_mel(self, spectrogram):
_mel_basis = self._build_mel_basis()
return np.dot(_mel_basis, spectrogram)
def _mel_to_linear(self, mel_spectrogram):
inv_mel_basis = np.linalg.pinv(self._build_mel_basis())
return np.maximum(1e-10, np.dot(inv_mel_basis, mel_spectrogram))
def _build_mel_basis(self):
"""return mel basis for mel scale"""
if self.mel_fmax is not None:
assert self.mel_fmax <= self.sample_rate // 2
2020-02-26 21:03:51 +08:00
return librosa.filters.mel(self.sample_rate,
self.n_fft,
n_mels=self.num_mels,
fmin=self.mel_fmin,
fmax=self.mel_fmax)
2019-12-17 14:23:34 +08:00
def _normalize(self, S):
"""put values in [0, self.max_norm] or [-self.max_norm, self,max_norm]"""
if self.signal_norm:
S_norm = (S - self.min_level_db) / (-self.min_level_db)
if self.symmetric_norm:
S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
if self.clip_norm:
S_norm = np.clip(S_norm, -self.max_norm, self.max_norm)
return S_norm
else:
S_norm = self.max_norm * S_norm
if self.clip_norm:
S_norm = np.clip(S_norm, 0, self.max_norm)
return S_norm
else:
return S
def _denormalize(self, S):
"""denormalize values"""
S_denorm = S
if self.signal_norm:
if self.symmetric_norm:
if self.clip_norm:
S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm)
2020-02-26 21:03:51 +08:00
S_denorm = (S_denorm + self.max_norm) * (
-self.min_level_db) / (2 * self.max_norm
) + self.min_level_db
2019-12-17 14:23:34 +08:00
return S_denorm
else:
if self.clip_norm:
S_denorm = np.clip(S_denorm, 0, self.max_norm)
2020-02-26 21:03:51 +08:00
S_denorm = S_denorm * (-self.min_level_db
) / self.max_norm + self.min_level_db
2019-12-17 14:23:34 +08:00
return S_denorm
else:
return S
def _stft(self, y):
return librosa.stft(
2020-02-26 21:03:51 +08:00
y=y,
2019-12-17 14:23:34 +08:00
n_fft=self.n_fft,
win_length=self.win_length,
hop_length=self.hop_length)
def _istft(self, S):
2020-02-26 21:03:51 +08:00
return librosa.istft(
S, hop_length=self.hop_length, win_length=self.win_length)
2019-12-17 14:23:34 +08:00
def spectrogram(self, y):
"""compute linear spectrogram(amplitude)
preemphasis -> stft -> mag -> amplitude_to_db -> minus_ref_level_db -> normalize
"""
if self.preemphasis:
D = self._stft(self.apply_preemphasis(y))
else:
D = self._stft(y)
S = self._amplitude_to_db(np.abs(D)) - self.ref_level_db
return self._normalize(S)
def melspectrogram(self, y):
"""compute linear spectrogram(amplitude)
preemphasis -> stft -> mag -> mel_scale -> amplitude_to_db -> minus_ref_level_db -> normalize
"""
if self.preemphasis:
D = self._stft(self.apply_preemphasis(y))
else:
D = self._stft(y)
2020-02-26 21:03:51 +08:00
S = self._amplitude_to_db(self._linear_to_mel(np.abs(
D))) - self.ref_level_db
2019-12-17 14:23:34 +08:00
return self._normalize(S)
def inv_spectrogram(self, spectrogram):
"""convert spectrogram back to waveform using griffin_lim in librosa"""
S = self._denormalize(spectrogram)
S = self._db_to_amplitude(S + self.ref_level_db)
if self.preemphasis:
2020-02-26 21:03:51 +08:00
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
return self._griffin_lim(S**self.power)
2019-12-17 14:23:34 +08:00
def inv_melspectrogram(self, mel_spectrogram):
S = self._denormalize(mel_spectrogram)
S = self._db_to_amplitude(S + self.ref_level_db)
2020-01-22 15:46:35 +08:00
S = self._mel_to_linear(np.abs(S))
2019-12-17 14:23:34 +08:00
if self.preemphasis:
2020-02-26 21:03:51 +08:00
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
return self._griffin_lim(S**self.power)
2019-12-17 14:23:34 +08:00
def out_linear_to_mel(self, linear_spec):
"""convert output linear spec to mel spec"""
S = self._denormalize(linear_spec)
S = self._db_to_amplitude(S + self.ref_level_db)
S = self._linear_to_mel(np.abs(S))
S = self._amplitude_to_db(S) - self.ref_level_db
mel = self._normalize(S)
return mel
2020-02-26 21:03:51 +08:00
2019-12-17 14:23:34 +08:00
def _griffin_lim(self, S):
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = self._istft(S_complex * angles)
for _ in range(self.griffin_lim_iters):
angles = np.exp(1j * np.angle(self._stft(y)))
y = self._istft(S_complex * angles)
return y
@staticmethod
def mulaw_encode(wav, qc):
2020-02-26 21:03:51 +08:00
mu = 2**qc - 1
2019-12-17 14:23:34 +08:00
# wav_abs = np.minimum(np.abs(wav), 1.0)
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu)
# Quantize signal to the specified number of levels.
signal = (signal + 1) / 2 * mu + 0.5
2020-02-26 21:03:51 +08:00
return np.floor(signal, )
2019-12-17 14:23:34 +08:00
@staticmethod
def mulaw_decode(wav, qc):
"""Recovers waveform from quantized values."""
2020-02-26 21:03:51 +08:00
mu = 2**qc - 1
x = np.sign(wav) / mu * ((1 + mu)**np.abs(wav) - 1)
2019-12-17 14:23:34 +08:00
return x
@staticmethod
def encode_16bits(x):
return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16)
@staticmethod
def quantize(x, bits):
return (x + 1.) * (2**bits - 1) / 2
@staticmethod
def dequantize(x, bits):
return 2 * x / (2**bits - 1) - 1