Parakeet/examples/tacotron2_aishell3/config.py

83 lines
3.4 KiB
Python
Raw Normal View History

add ge2e and tacotron2_aishell3 example (#107) * hacky thing, add tone support for acoustic model * fix experiments for waveflow and wavenet, only write visual log in rank-0 * use emb add in tacotron2 * 1. remove space from numericalized representation; 2. fix decoder paddign mask's unsqueeze dim. * remove bn in postnet * refactoring code * add an option to normalize volume when loading audio. * add an embedding layer. * 1. change the default min value of LogMagnitude to 1e-5; 2. remove stop logit prediction from tacotron2 model. * WIP: baker * add ge2e * fix lstm speaker encoder * fix lstm speaker encoder * fix speaker encoder and add support for 2 more datasets * simplify visualization code * add a simple strategy to support multispeaker for tacotron. * add vctk example for refactored tacotron * fix indentation * fix class name * fix visualizer * fix root path * fix root path * fix root path * fix typos * fix bugs * fix text log extention name * add example for baker and aishell3 * update experiment and display * format code for tacotron_vctk, add plot_waveform to display * add new trainer * minor fix * add global condition support for tacotron2 * add gst layer * add 2 frontend * fix fmax for example/waveflow * update collate function, data loader not does not convert nested list into numpy array. * WIP: add hifigan * WIP:update hifigan * change stft to use conv1d * add audio datasets * change batch_text_id, batch_spec, batch_wav to include valid lengths in the returned value * change wavenet to use on-the-fly prepeocessing * fix typos * resolve conflict * remove imports that are removed * remove files not included in this release * remove imports to deleted modules * move tacotron2_msp * clean code * fix argument order * fix argument name * clean code for data processing * WIP: add README * add more details to thr README, fix some preprocess scripts * add voice cloning notebook * add an optional to alter the loss and model structure of tacotron2, add an alternative config * add plot_multiple_attentions and update visualization code in transformer_tts * format code * remove tacotron2_msp * update tacotron2 from_pretrained, update setup.py * update tacotron2 * update tacotron_aishell3's README * add images for exampels/tacotron2_aishell3's README * update README for examples/ge2e * add STFT back * add extra_config keys into the default config of tacotron * fix typos and docs * update README and doc * update docstrings for tacotron * update doc * update README * add links to downlaod pretrained models * refine READMEs and clean code * add praatio into requirements for running the experiments * format code with pre-commit * simplify text processing code and update notebook
2021-05-13 17:49:50 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from yacs.config import CfgNode as CN
_C = CN()
_C.data = CN(
dict(
batch_size=32, # batch size
valid_size=64, # the first N examples are reserved for validation
sample_rate=22050, # Hz, sample rate
n_fft=1024, # fft frame size
win_length=1024, # window size
hop_length=256, # hop size between ajacent frame
fmax=8000, # Hz, max frequency when converting to mel
fmin=0, # Hz, min frequency when converting to mel
d_mels=80, # mel bands
padding_idx=0, # text embedding's padding index
))
_C.model = CN(
dict(
vocab_size=70,
n_tones=10,
reduction_factor=1, # reduction factor
d_encoder=512, # embedding & encoder's internal size
encoder_conv_layers=3, # number of conv layer in tacotron2 encoder
encoder_kernel_size=5, # kernel size of conv layers in tacotron2 encoder
d_prenet=256, # hidden size of decoder prenet
# hidden size of the first rnn layer in tacotron2 decoder
d_attention_rnn=1024,
# hidden size of the second rnn layer in tacotron2 decoder
d_decoder_rnn=1024,
d_attention=128, # hidden size of decoder location linear layer
attention_filters=32, # number of filter in decoder location conv layer
attention_kernel_size=31, # kernel size of decoder location conv layer
d_postnet=512, # hidden size of decoder postnet
postnet_kernel_size=5, # kernel size of conv layers in postnet
postnet_conv_layers=5, # number of conv layer in decoder postnet
p_encoder_dropout=0.5, # droput probability in encoder
p_prenet_dropout=0.5, # droput probability in decoder prenet
# droput probability of first rnn layer in decoder
p_attention_dropout=0.1,
# droput probability of second rnn layer in decoder
p_decoder_dropout=0.1,
p_postnet_dropout=0.5, # droput probability in decoder postnet
guided_attention_loss_sigma=0.2,
d_global_condition=256,
# whether to use a classifier to predict stop probability
use_stop_token=False,
# whether to use guided attention loss in training
use_guided_attention_loss=True, ))
_C.training = CN(
dict(
lr=1e-3, # learning rate
weight_decay=1e-6, # the coeff of weight decay
grad_clip_thresh=1.0, # the clip norm of grad clip.
valid_interval=1000, # validation
save_interval=1000, # checkpoint
max_iteration=500000, # max iteration to train
))
def get_cfg_defaults():
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
return _C.clone()