147 lines
6.3 KiB
Python
147 lines
6.3 KiB
Python
|
import os
|
||
|
from tqdm import tqdm
|
||
|
from tensorboardX import SummaryWriter
|
||
|
from pathlib import Path
|
||
|
from collections import OrderedDict
|
||
|
import argparse
|
||
|
from parse import add_config_options_to_parser
|
||
|
from pprint import pprint
|
||
|
from ruamel import yaml
|
||
|
from matplotlib import cm
|
||
|
import numpy as np
|
||
|
import paddle.fluid as fluid
|
||
|
import paddle.fluid.dygraph as dg
|
||
|
import paddle.fluid.layers as layers
|
||
|
from parakeet.modules.utils import cross_entropy
|
||
|
from parakeet.models.dataloader.ljspeech import LJSpeechLoader
|
||
|
from parakeet.models.transformer_tts.transformerTTS import TransformerTTS
|
||
|
|
||
|
def load_checkpoint(step, model_path):
|
||
|
model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
|
||
|
new_state_dict = OrderedDict()
|
||
|
for param in model_dict:
|
||
|
if param.startswith('_layers.'):
|
||
|
new_state_dict[param[8:]] = model_dict[param]
|
||
|
else:
|
||
|
new_state_dict[param] = model_dict[param]
|
||
|
return new_state_dict, opti_dict
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
local_rank = dg.parallel.Env().local_rank if args.use_data_parallel else 0
|
||
|
nranks = dg.parallel.Env().nranks if args.use_data_parallel else 1
|
||
|
|
||
|
with open(args.config_path) as f:
|
||
|
cfg = yaml.load(f, Loader=yaml.Loader)
|
||
|
|
||
|
global_step = 0
|
||
|
place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
|
||
|
if args.use_data_parallel else fluid.CUDAPlace(0)
|
||
|
if args.use_gpu else fluid.CPUPlace())
|
||
|
|
||
|
if not os.path.exists(args.log_dir):
|
||
|
os.mkdir(args.log_dir)
|
||
|
path = os.path.join(args.log_dir,'transformer')
|
||
|
|
||
|
writer = SummaryWriter(path) if local_rank == 0 else None
|
||
|
|
||
|
with dg.guard(place):
|
||
|
model = TransformerTTS(cfg)
|
||
|
|
||
|
model.train()
|
||
|
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(cfg['warm_up_step'] *( args.lr ** 2)), cfg['warm_up_step']),
|
||
|
parameter_list=model.parameters())
|
||
|
|
||
|
reader = LJSpeechLoader(cfg, args, nranks, local_rank, shuffle=True).reader()
|
||
|
|
||
|
if args.checkpoint_path is not None:
|
||
|
model_dict, opti_dict = load_checkpoint(str(args.transformer_step), os.path.join(args.checkpoint_path, "transformer"))
|
||
|
model.set_dict(model_dict)
|
||
|
optimizer.set_dict(opti_dict)
|
||
|
global_step = args.transformer_step
|
||
|
print("load checkpoint!!!")
|
||
|
|
||
|
if args.use_data_parallel:
|
||
|
strategy = dg.parallel.prepare_context()
|
||
|
model = fluid.dygraph.parallel.DataParallel(model, strategy)
|
||
|
|
||
|
for epoch in range(args.epochs):
|
||
|
pbar = tqdm(reader)
|
||
|
for i, data in enumerate(pbar):
|
||
|
pbar.set_description('Processing at epoch %d'%epoch)
|
||
|
character, mel, mel_input, pos_text, pos_mel, text_length, _ = data
|
||
|
|
||
|
global_step += 1
|
||
|
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(character, mel_input, pos_text, pos_mel)
|
||
|
|
||
|
|
||
|
label = (pos_mel == 0).astype(np.float32)
|
||
|
|
||
|
mel_loss = layers.mean(layers.abs(layers.elementwise_sub(mel_pred, mel)))
|
||
|
post_mel_loss = layers.mean(layers.abs(layers.elementwise_sub(postnet_pred, mel)))
|
||
|
loss = mel_loss + post_mel_loss
|
||
|
# Note: When used stop token loss the learning did not work.
|
||
|
if args.stop_token:
|
||
|
stop_loss = cross_entropy(stop_preds, label)
|
||
|
loss = loss + stop_loss
|
||
|
|
||
|
if local_rank==0:
|
||
|
writer.add_scalars('training_loss', {
|
||
|
'mel_loss':mel_loss.numpy(),
|
||
|
'post_mel_loss':post_mel_loss.numpy()
|
||
|
}, global_step)
|
||
|
|
||
|
if args.stop_token:
|
||
|
writer.add_scalar('stop_loss', stop_loss.numpy(), global_step)
|
||
|
|
||
|
writer.add_scalars('alphas', {
|
||
|
'encoder_alpha':model.encoder.alpha.numpy(),
|
||
|
'decoder_alpha':model.decoder.alpha.numpy(),
|
||
|
}, global_step)
|
||
|
|
||
|
writer.add_scalar('learning_rate', optimizer._learning_rate.step().numpy(), global_step)
|
||
|
|
||
|
if global_step % args.image_step == 1:
|
||
|
for i, prob in enumerate(attn_probs):
|
||
|
for j in range(4):
|
||
|
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
||
|
writer.add_image('Attention_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
||
|
|
||
|
for i, prob in enumerate(attn_enc):
|
||
|
for j in range(4):
|
||
|
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
||
|
writer.add_image('Attention_enc_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
||
|
|
||
|
for i, prob in enumerate(attn_dec):
|
||
|
for j in range(4):
|
||
|
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
||
|
writer.add_image('Attention_dec_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
||
|
|
||
|
if args.use_data_parallel:
|
||
|
loss = model.scale_loss(loss)
|
||
|
loss.backward()
|
||
|
model.apply_collective_grads()
|
||
|
else:
|
||
|
loss.backward()
|
||
|
optimizer.minimize(loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(cfg['grad_clip_thresh']))
|
||
|
model.clear_gradients()
|
||
|
|
||
|
# save checkpoint
|
||
|
if local_rank==0 and global_step % args.save_step == 0:
|
||
|
if not os.path.exists(args.save_path):
|
||
|
os.mkdir(args.save_path)
|
||
|
save_path = os.path.join(args.save_path,'transformer/%d' % global_step)
|
||
|
dg.save_dygraph(model.state_dict(), save_path)
|
||
|
dg.save_dygraph(optimizer.state_dict(), save_path)
|
||
|
if local_rank==0:
|
||
|
writer.close()
|
||
|
|
||
|
|
||
|
if __name__ =='__main__':
|
||
|
parser = argparse.ArgumentParser(description="Train TransformerTTS model")
|
||
|
add_config_options_to_parser(parser)
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
# Print the whole config setting.
|
||
|
pprint(args)
|
||
|
main(args)
|