203 lines
7.1 KiB
Python
203 lines
7.1 KiB
Python
|
import time
|
||
|
import logging
|
||
|
from pathlib import Path
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
from paddle import distributed as dist
|
||
|
from paddle.io import DataLoader, DistributedBatchSampler
|
||
|
from tensorboardX import SummaryWriter
|
||
|
from collections import defaultdict
|
||
|
|
||
|
import parakeet
|
||
|
from parakeet.data import dataset
|
||
|
from parakeet.frontend import English
|
||
|
from parakeet.models.transformer_tts import TransformerTTS, TransformerTTSLoss
|
||
|
from parakeet.utils import scheduler, checkpoint, mp_tools, display
|
||
|
from parakeet.training.cli import default_argument_parser
|
||
|
from parakeet.training.experiment import ExperimentBase
|
||
|
|
||
|
from config import get_cfg_defaults
|
||
|
from ljspeech import LJSpeech, LJSpeechCollector, Transform
|
||
|
|
||
|
class Experiment(ExperimentBase):
|
||
|
def setup_model(self):
|
||
|
config = self.config
|
||
|
frontend = English()
|
||
|
model = TransformerTTS(
|
||
|
frontend,
|
||
|
d_encoder=config.model.d_encoder,
|
||
|
d_decoder=config.model.d_decoder,
|
||
|
d_mel=config.data.d_mel,
|
||
|
n_heads=config.model.n_heads,
|
||
|
d_ffn=config.model.d_ffn,
|
||
|
encoder_layers=config.model.encoder_layers,
|
||
|
decoder_layers=config.model.decoder_layers,
|
||
|
d_prenet=config.model.d_prenet,
|
||
|
d_postnet=config.model.d_postnet,
|
||
|
postnet_layers=config.model.postnet_layers,
|
||
|
postnet_kernel_size=config.model.postnet_kernel_size,
|
||
|
max_reduction_factor=config.model.max_reduction_factor,
|
||
|
decoder_prenet_dropout=config.model.decoder_prenet_dropout,
|
||
|
dropout=config.model.dropout)
|
||
|
if self.parallel:
|
||
|
model = paddle.DataParallel(model)
|
||
|
optimizer = paddle.optimizer.Adam(
|
||
|
learning_rate=config.training.lr,
|
||
|
beta1=0.9,
|
||
|
beta2=0.98,
|
||
|
epsilon=1e-9,
|
||
|
parameters=model.parameters()
|
||
|
)
|
||
|
criterion = TransformerTTSLoss(config.model.stop_loss_scale)
|
||
|
drop_n_heads = scheduler.StepWise(config.training.drop_n_heads)
|
||
|
reduction_factor = scheduler.StepWise(config.training.reduction_factor)
|
||
|
|
||
|
self.model = model
|
||
|
self.optimizer = optimizer
|
||
|
self.criterion = criterion
|
||
|
self.drop_n_heads = drop_n_heads
|
||
|
self.reduction_factor = reduction_factor
|
||
|
|
||
|
def setup_dataloader(self):
|
||
|
args = self.args
|
||
|
config = self.config
|
||
|
|
||
|
ljspeech_dataset = LJSpeech(args.data)
|
||
|
transform = Transform(config.data.mel_start_value, config.data.mel_end_value)
|
||
|
ljspeech_dataset = dataset.TransformDataset(ljspeech_dataset, transform)
|
||
|
valid_set, train_set = dataset.split(ljspeech_dataset, config.data.valid_size)
|
||
|
batch_fn = LJSpeechCollector(padding_idx=config.data.padding_idx)
|
||
|
|
||
|
if not self.parallel:
|
||
|
train_loader = DataLoader(
|
||
|
train_set,
|
||
|
batch_size=config.data.batch_size,
|
||
|
shuffle=True,
|
||
|
drop_last=True,
|
||
|
collate_fn=batch_fn)
|
||
|
else:
|
||
|
sampler = DistributedBatchSampler(
|
||
|
train_set,
|
||
|
batch_size=config.data.batch_size,
|
||
|
num_replicas=dist.get_world_size(),
|
||
|
rank=dist.get_rank(),
|
||
|
shuffle=True,
|
||
|
drop_last=True)
|
||
|
train_loader = DataLoader(
|
||
|
train_set, batch_sampler=sampler, collate_fn=batch_fn)
|
||
|
|
||
|
valid_loader = DataLoader(
|
||
|
valid_set, batch_size=config.data.batch_size, collate_fn=batch_fn)
|
||
|
|
||
|
self.train_loader = train_loader
|
||
|
self.valid_loader = valid_loader
|
||
|
|
||
|
def compute_outputs(self, text, mel, stop_label):
|
||
|
model_core = self.model._layers if self.parallel else self.model
|
||
|
model_core.set_constants(
|
||
|
self.reduction_factor(self.iteration),
|
||
|
self.drop_n_heads(self.iteration))
|
||
|
|
||
|
# TODO(chenfeiyu): we can combine these 2 slices
|
||
|
mel_input = mel[:,:-1, :]
|
||
|
reduced_mel_input = mel_input[:, ::model_core.r, :]
|
||
|
outputs = self.model(text, reduced_mel_input)
|
||
|
return outputs
|
||
|
|
||
|
def compute_losses(self, inputs, outputs):
|
||
|
_, mel, stop_label = inputs
|
||
|
mel_target = mel[:, 1:, :]
|
||
|
stop_label_target = stop_label[:, 1:]
|
||
|
|
||
|
mel_output = outputs["mel_output"]
|
||
|
mel_intermediate = outputs["mel_intermediate"]
|
||
|
stop_logits = outputs["stop_logits"]
|
||
|
|
||
|
time_steps = mel_target.shape[1]
|
||
|
losses = self.criterion(
|
||
|
mel_output[:,:time_steps, :],
|
||
|
mel_intermediate[:,:time_steps, :],
|
||
|
mel_target,
|
||
|
stop_logits[:,:time_steps, :],
|
||
|
stop_label_target)
|
||
|
return losses
|
||
|
|
||
|
def train_batch(self):
|
||
|
start = time.time()
|
||
|
batch = self.read_batch()
|
||
|
data_loader_time = time.time() - start
|
||
|
|
||
|
self.optimizer.clear_grad()
|
||
|
self.model.train()
|
||
|
text, mel, stop_label = batch
|
||
|
outputs = self.compute_outputs(text, mel, stop_label)
|
||
|
losses = self.compute_losses(batch, outputs)
|
||
|
loss = losses["loss"]
|
||
|
loss.backward()
|
||
|
self.optimizer.step()
|
||
|
iteration_time = time.time() - start
|
||
|
|
||
|
losses_np = {k: float(v) for k, v in losses.items()}
|
||
|
# logging
|
||
|
msg = "Rank: {}, ".format(dist.get_rank())
|
||
|
msg += "step: {}, ".format(self.iteration)
|
||
|
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time, iteration_time)
|
||
|
msg += ', '.join('{}: {:>.6f}'.format(k, v) for k, v in losses_np.items())
|
||
|
self.logger.info(msg)
|
||
|
|
||
|
if dist.get_rank() == 0:
|
||
|
for k, v in losses_np.items():
|
||
|
self.visualizer.add_scalar(f"train_loss/{k}", v, self.iteration)
|
||
|
|
||
|
@mp_tools.rank_zero_only
|
||
|
@paddle.no_grad()
|
||
|
def valid(self):
|
||
|
valid_losses = defaultdict(list)
|
||
|
for i, batch in enumerate(self.valid_loader):
|
||
|
text, mel, stop_label = batch
|
||
|
outputs = self.compute_outputs(text, mel, stop_label)
|
||
|
losses = self.compute_losses(batch, outputs)
|
||
|
for k, v in losses.items():
|
||
|
valid_losses[k].append(float(v))
|
||
|
|
||
|
if i < 2:
|
||
|
attention_weights = outputs["cross_attention_weights"]
|
||
|
display.add_multi_attention_plots(
|
||
|
self.visualizer,
|
||
|
f"valid_sentence_{i}_cross_attention_weights",
|
||
|
attention_weights,
|
||
|
self.iteration)
|
||
|
|
||
|
# write visual log
|
||
|
valid_losses = {k: np.mean(v) for k, v in valid_losses.items()}
|
||
|
for k, v in valid_losses.items():
|
||
|
self.visualizer.add_scalar(f"valid/{k}", v, self.iteration)
|
||
|
|
||
|
|
||
|
def main_sp(config, args):
|
||
|
exp = Experiment(config, args)
|
||
|
exp.setup()
|
||
|
exp.run()
|
||
|
|
||
|
|
||
|
def main(config, args):
|
||
|
if args.nprocs > 1 and args.device == "gpu":
|
||
|
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
|
||
|
else:
|
||
|
main_sp(config, args)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
config = get_cfg_defaults()
|
||
|
parser = default_argument_parser()
|
||
|
args = parser.parse_args()
|
||
|
if args.config:
|
||
|
config.merge_from_file(args.config)
|
||
|
if args.opts:
|
||
|
config.merge_from_list(args.opts)
|
||
|
config.freeze()
|
||
|
print(config)
|
||
|
print(args)
|
||
|
|
||
|
main(config, args)
|