Parakeet/examples/transformer_tts/synthesis.py

203 lines
7.1 KiB
Python
Raw Normal View History

2020-02-26 21:03:51 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2019-12-16 17:04:22 +08:00
import os
from scipy.io.wavfile import write
import numpy as np
from tqdm import tqdm
from matplotlib import cm
2019-12-16 17:04:22 +08:00
from tensorboardX import SummaryWriter
2020-02-13 14:48:21 +08:00
from ruamel import yaml
2019-12-16 17:04:22 +08:00
from pathlib import Path
2020-02-13 14:48:21 +08:00
import argparse
2019-12-16 17:04:22 +08:00
from pprint import pprint
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
from parakeet.g2p.en import text_to_sequence
from parakeet.models.transformer_tts.utils import *
from parakeet.models.transformer_tts import TransformerTTS
from parakeet.models.waveflow import WaveFlowModule
from parakeet.modules.weight_norm import WeightNormWrapper
from parakeet.utils import io
def add_config_options_to_parser(parser):
parser.add_argument("--config", type=str, help="path of the config file")
parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
parser.add_argument(
"--stop_threshold",
type=float,
default=0.5,
help="The threshold of stop token which indicates the time step should stop generate spectrum or not."
)
parser.add_argument(
"--max_len",
type=int,
default=1000,
help="The max length of audio when synthsis.")
parser.add_argument(
"--checkpoint_transformer",
type=str,
help="transformer_tts checkpoint for synthesis")
parser.add_argument(
"--vocoder",
type=str,
default="griffin-lim",
choices=['griffin-lim', 'waveflow'],
help="vocoder method")
parser.add_argument(
"--config_vocoder", type=str, help="path of the vocoder config file")
parser.add_argument(
"--checkpoint_vocoder",
type=str,
help="vocoder checkpoint for synthesis")
parser.add_argument(
"--output",
type=str,
default="synthesis",
help="path to save experiment results")
2019-12-16 17:04:22 +08:00
2020-02-26 21:03:51 +08:00
2020-02-13 14:48:21 +08:00
def synthesis(text_input, args):
local_rank = dg.parallel.Env().local_rank
place = (fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace())
2020-02-13 14:48:21 +08:00
with open(args.config) as f:
2020-02-13 14:48:21 +08:00
cfg = yaml.load(f, Loader=yaml.Loader)
2019-12-16 17:04:22 +08:00
# tensorboard
if not os.path.exists(args.output):
os.mkdir(args.output)
2019-12-16 17:04:22 +08:00
writer = SummaryWriter(os.path.join(args.output, 'log'))
2019-12-16 17:04:22 +08:00
fluid.enable_dygraph(place)
with fluid.unique_name.guard():
network_cfg = cfg['network']
model = TransformerTTS(
network_cfg['embedding_size'], network_cfg['hidden_size'],
network_cfg['encoder_num_head'], network_cfg['encoder_n_layers'],
cfg['audio']['num_mels'], network_cfg['outputs_per_step'],
network_cfg['decoder_num_head'], network_cfg['decoder_n_layers'])
# Load parameters.
global_step = io.load_parameters(
model=model, checkpoint_path=args.checkpoint_transformer)
model.eval()
# init input
text = np.asarray(text_to_sequence(text_input))
text = fluid.layers.unsqueeze(dg.to_variable(text).astype(np.int64), [0])
mel_input = dg.to_variable(np.zeros([1, 1, 80])).astype(np.float32)
pos_text = np.arange(1, text.shape[1] + 1)
pos_text = fluid.layers.unsqueeze(
dg.to_variable(pos_text).astype(np.int64), [0])
for i in range(args.max_len):
pos_mel = np.arange(1, mel_input.shape[1] + 1)
pos_mel = fluid.layers.unsqueeze(
dg.to_variable(pos_mel).astype(np.int64), [0])
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
text, mel_input, pos_text, pos_mel)
if stop_preds.numpy()[0, -1] > args.stop_threshold:
break
mel_input = fluid.layers.concat(
[mel_input, postnet_pred[:, -1:, :]], axis=1)
global_step = 0
for i, prob in enumerate(attn_probs):
for j in range(4):
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
writer.add_image(
'Attention_%d_0' % global_step,
x,
i * 4 + j,
dataformats="HWC")
if args.vocoder == 'griffin-lim':
#synthesis use griffin-lim
wav = synthesis_with_griffinlim(postnet_pred, cfg['audio'])
elif args.vocoder == 'waveflow':
# synthesis use waveflow
wav = synthesis_with_waveflow(postnet_pred, args,
args.checkpoint_vocoder, place)
else:
print(
'vocoder error, we only support griffinlim and waveflow, but recevied %s.'
% args.vocoder)
writer.add_audio(text_input + '(' + args.vocoder + ')', wav, 0,
cfg['audio']['sr'])
if not os.path.exists(os.path.join(args.output, 'samples')):
os.mkdir(os.path.join(args.output, 'samples'))
write(
os.path.join(
os.path.join(args.output, 'samples'), args.vocoder + '.wav'),
cfg['audio']['sr'], wav)
print("Synthesis completed !!!")
writer.close()
def synthesis_with_griffinlim(mel_output, cfg):
# synthesis with griffin-lim
mel_output = fluid.layers.transpose(
fluid.layers.squeeze(mel_output, [0]), [1, 0])
mel_output = np.exp(mel_output.numpy())
basis = librosa.filters.mel(cfg['sr'],
cfg['n_fft'],
cfg['num_mels'],
fmin=cfg['fmin'],
fmax=cfg['fmax'])
inv_basis = np.linalg.pinv(basis)
spec = np.maximum(1e-10, np.dot(inv_basis, mel_output))
wav = librosa.core.griffinlim(
spec**cfg['power'],
hop_length=cfg['hop_length'],
win_length=cfg['win_length'])
return wav
def synthesis_with_waveflow(mel_output, args, checkpoint, place):
fluid.enable_dygraph(place)
args.config = args.config_vocoder
args.use_fp16 = False
config = io.add_yaml_config_to_args(args)
mel_spectrogram = fluid.layers.transpose(
fluid.layers.squeeze(mel_output, [0]), [1, 0])
mel_spectrogram = fluid.layers.unsqueeze(mel_spectrogram, [0])
# Build model.
waveflow = WaveFlowModule(config)
io.load_parameters(model=waveflow, checkpoint_path=checkpoint)
for layer in waveflow.sublayers():
if isinstance(layer, WeightNormWrapper):
layer.remove_weight_norm()
# Run model inference.
wav = waveflow.synthesize(mel_spectrogram, sigma=config.sigma)
return wav.numpy()[0]
2019-12-16 17:04:22 +08:00
2020-02-26 21:03:51 +08:00
2019-12-16 17:04:22 +08:00
if __name__ == '__main__':
2020-02-13 14:48:21 +08:00
parser = argparse.ArgumentParser(description="Synthesis model")
2019-12-16 17:04:22 +08:00
add_config_options_to_parser(parser)
2020-02-13 14:48:21 +08:00
args = parser.parse_args()
# Print the whole config setting.
pprint(vars(args))
synthesis(
"Life was like a box of chocolates, you never know what you're gonna get.",
args)