Parakeet/examples/waveflow/README.md

122 lines
5.5 KiB
Markdown
Raw Normal View History

2019-12-19 16:34:22 +08:00
# WaveFlow with Paddle Fluid
2019-12-19 16:34:22 +08:00
Paddle fluid implementation of [WaveFlow: A Compact Flow-based Model for Raw Audio](https://arxiv.org/abs/1912.01219).
## Project Structure
```text
├── configs # yaml configuration files of preset model hyperparameters
├── benchmark.py # benchmark code to test the speed of batched speech synthesis
├── data.py # dataset and dataloader settings for LJSpeech
├── synthesis.py # script for speech synthesis
├── train.py # script for model training
├── utils.py # helper functions for e.g., model checkpointing
├── waveflow.py # WaveFlow model high level APIs
└── waveflow_modules.py # WaveFlow model implementation
```
## Usage
There are many hyperparameters to be tuned depending on the specification of model and dataset you are working on.
2019-12-19 16:34:22 +08:00
We provide `wavenet_ljspeech.yaml` as a hyperparameter set that works well on the LJSpeech dataset.
Note that `train.py`, `synthesis.py`, and `benchmark.py` all accept a `--config` parameter. To ensure consistency, you should use the same config yaml file for both training, synthesizing and benchmarking. You can also overwrite these preset hyperparameters with command line by updating parameters after `--config`.
2019-12-19 16:34:22 +08:00
For example `--config=${yaml} --batch_size=8` can overwrite the corresponding hyperparameters in the `${yaml}` config file. For more details about these hyperparameters, check `utils.add_config_options_to_parser`.
Note that you also need to specify some additional parameters for `train.py`, `synthesis.py`, and `benchmark.py`, and the details can be found in `train.add_options_to_parser`, `synthesis.add_options_to_parser`, and `benchmark.add_options_to_parser`, respectively.
### Dataset
Download and unzip [LJSpeech](https://keithito.com/LJ-Speech-Dataset/).
```bash
wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
tar xjvf LJSpeech-1.1.tar.bz2
```
In this example, assume that the path of unzipped LJSpeech dataset is `./data/LJSpeech-1.1`.
### Train on single GPU
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0
2019-12-19 16:34:22 +08:00
python -u train.py \
--config=./configs/waveflow_ljspeech.yaml \
--root=./data/LJSpeech-1.1 \
--name=${ModelName} --batch_size=4 \
--parallel=false --use_gpu=true
```
2019-12-19 16:34:22 +08:00
#### Save and Load checkpoints
Our model will save model parameters as checkpoints in `./runs/waveflow/${ModelName}/checkpoint/` every 10000 iterations by default.
The saved checkpoint will have the format of `step-${iteration_number}.pdparams` for model parameters and `step-${iteration_number}.pdopt` for optimizer parameters.
2019-12-19 16:34:22 +08:00
There are three ways to load a checkpoint and resume training (take an example that you want to load a 500000-iteration checkpoint):
1. Use `--checkpoint=./runs/waveflow/${ModelName}/checkpoint/step-500000` to provide a specific path to load. Note that you only need to provide the base name of the parameter file, which is `step-500000`, no extension name `.pdparams` or `.pdopt` is needed.
2019-12-19 16:34:22 +08:00
2. Use `--iteration=500000`.
3. If you don't specify either `--checkpoint` or `--iteration`, the model will automatically load the latest checkpoint in `./runs/waveflow/${ModelName}/checkpoint`.
### Train on multiple GPUs
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -u -m paddle.distributed.launch train.py \
2019-12-19 16:34:22 +08:00
--config=./configs/waveflow_ljspeech.yaml \
--root=./data/LJSpeech-1.1 \
2019-12-19 16:34:22 +08:00
--name=${ModelName} --parallel=true --use_gpu=true
```
Use `export CUDA_VISIBLE_DEVICES=0,1,2,3` to set the GPUs that you want to use to be visible. Then the `paddle.distributed.launch` module will use these visible GPUs to do data parallel training in multiprocessing mode.
2019-12-19 16:34:22 +08:00
### Monitor with Tensorboard
By default, the logs are saved in `./runs/waveflow/${ModelName}/logs/`. You can monitor logs by tensorboard.
```bash
tensorboard --logdir=${log_dir} --port=8888
```
### Synthesize from a checkpoint
Check the [Save and load checkpoint](#save-and-load-checkpoints) section on how to load a specific checkpoint.
The following example will automatically load the latest checkpoint:
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0
python -u synthesis.py \
--config=./configs/waveflow_ljspeech.yaml \
--root=./data/LJSpeech-1.1 \
--name=${ModelName} --use_gpu=true \
--output=./syn_audios \
--sample=${SAMPLE} \
--sigma=1.0
```
In this example, `--output` specifies where to save the synthesized audios and `--sample` specifies which sample in the valid dataset (a split from the whole LJSpeech dataset, by default contains the first 16 audio samples) to synthesize based on the mel-spectrograms computed from the ground truth sample audio, e.g., `--sample=0` means to synthesize the first audio in the valid dataset.
### Benchmarking
Use the following example to benchmark the speed of batched speech synthesis, which reports how many times faster than real-time:
```bash
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
export CUDA_VISIBLE_DEVICES=0
python -u benchmark.py \
--config=./configs/waveflow_ljspeech.yaml \
--root=./data/LJSpeech-1.1 \
--name=${ModelName} --use_gpu=true
```
2020-02-25 23:53:54 +08:00
### Low-precision inference
This model supports the float16 low-precsion inference. By appending the argument
```bash
--use_fp16=true
```
to the command of synthesis and benchmarking, one can experience the fast speed of low-precision inference.