2019-12-17 14:23:34 +08:00
|
|
|
import librosa
|
|
|
|
import soundfile as sf
|
|
|
|
import numpy as np
|
|
|
|
import scipy.io
|
|
|
|
import scipy.signal
|
|
|
|
|
|
|
|
class AudioProcessor(object):
|
|
|
|
def __init__(self,
|
|
|
|
sample_rate=None, # int, sampling rate
|
|
|
|
num_mels=None, # int, bands of mel spectrogram
|
|
|
|
min_level_db=None, # float, minimum level db
|
2020-01-08 11:55:06 +08:00
|
|
|
ref_level_db=None, # float, reference level db
|
2019-12-17 14:23:34 +08:00
|
|
|
n_fft=None, # int: number of samples in a frame for stft
|
|
|
|
win_length=None, # int: the same meaning with n_fft
|
|
|
|
hop_length=None, # int: number of samples between neighboring frame
|
|
|
|
power=None, # float:power to raise before griffin-lim
|
|
|
|
preemphasis=None, # float: preemphasis coefficident
|
|
|
|
signal_norm=None, #
|
|
|
|
symmetric_norm=False, # bool, apply clip norm in [-max_norm, max_form]
|
|
|
|
max_norm=None, # float, max norm
|
|
|
|
mel_fmin=None, # int: mel spectrogram's minimum frequency
|
|
|
|
mel_fmax=None, # int: mel spectrogram's maximum frequency
|
|
|
|
clip_norm=True, # bool: clip spectrogram's norm
|
|
|
|
griffin_lim_iters=None, # int:
|
2020-01-08 11:55:06 +08:00
|
|
|
do_trim_silence=False, # bool: trim silence
|
2019-12-17 14:23:34 +08:00
|
|
|
sound_norm=False,
|
|
|
|
**kwargs):
|
|
|
|
self.sample_rate = sample_rate
|
|
|
|
self.num_mels = num_mels
|
|
|
|
self.min_level_db = min_level_db
|
|
|
|
self.ref_level_db = ref_level_db
|
|
|
|
|
|
|
|
# stft related
|
|
|
|
self.n_fft = n_fft
|
|
|
|
self.win_length = win_length or n_fft
|
|
|
|
# hop length defaults to 1/4 window_length
|
|
|
|
self.hop_length = hop_length or 0.25 * self.win_length
|
|
|
|
|
|
|
|
self.power = power
|
|
|
|
self.preemphasis = float(preemphasis)
|
|
|
|
|
|
|
|
self.griffin_lim_iters = griffin_lim_iters
|
|
|
|
self.signal_norm = signal_norm
|
|
|
|
self.symmetric_norm = symmetric_norm
|
|
|
|
|
|
|
|
# mel transform related
|
|
|
|
self.mel_fmin = mel_fmin
|
|
|
|
self.mel_fmax = mel_fmax
|
|
|
|
|
|
|
|
self.max_norm = 1.0 if max_norm is None else float(max_norm)
|
|
|
|
self.clip_norm = clip_norm
|
|
|
|
self.do_trim_silence = do_trim_silence
|
|
|
|
|
|
|
|
self.sound_norm = sound_norm
|
|
|
|
self.num_freq, self.frame_length_ms, self.frame_shift_ms = self._stft_parameters()
|
|
|
|
|
|
|
|
def _stft_parameters(self):
|
|
|
|
"""compute frame length and hop length in ms"""
|
|
|
|
frame_length_ms = self.win_length * 1. / self.sample_rate
|
|
|
|
frame_shift_ms = self.hop_length * 1. / self.sample_rate
|
|
|
|
num_freq = 1 + self.n_fft // 2
|
|
|
|
return num_freq, frame_length_ms, frame_shift_ms
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
"""object repr"""
|
|
|
|
cls_name_str = self.__class__.__name__
|
|
|
|
members = vars(self)
|
|
|
|
dict_str = "\n".join([" {}: {},".format(k, v) for k, v in members.items()])
|
|
|
|
repr_str = "{}(\n{})\n".format(cls_name_str, dict_str)
|
|
|
|
return repr_str
|
|
|
|
|
|
|
|
def save_wav(self, path, wav):
|
|
|
|
"""save audio with scipy.io.wavfile in 16bit integers"""
|
|
|
|
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
|
|
|
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.as_type(np.int16))
|
|
|
|
|
|
|
|
def load_wav(self, path, sr=None):
|
|
|
|
"""load wav -> trim_silence -> rescale"""
|
|
|
|
|
|
|
|
x, sr = librosa.load(path, sr=None)
|
|
|
|
assert self.sample_rate == sr, "audio sample rate: {}Hz != processor sample rate: {}Hz".format(sr, self.sample_rate)
|
|
|
|
if self.do_trim_silence:
|
|
|
|
try:
|
|
|
|
x = self.trim_silence(x)
|
|
|
|
except ValueError:
|
|
|
|
print(" [!] File cannot be trimmed for silence - {}".format(path))
|
|
|
|
if self.sound_norm:
|
|
|
|
x = x / x.max() * 0.9 # why 0.9 ?
|
|
|
|
return x
|
|
|
|
|
|
|
|
def trim_silence(self, wav):
|
|
|
|
"""Trim soilent parts with a threshold and 0.01s margin"""
|
|
|
|
margin = int(self.sample_rate * 0.01)
|
|
|
|
wav = wav[margin: -margin]
|
|
|
|
trimed_wav = librosa.effects.trim(wav, top_db=60, frame_length=self.win_length, hop_length=self.hop_length)[0]
|
|
|
|
return trimed_wav
|
|
|
|
|
|
|
|
def apply_preemphasis(self, x):
|
|
|
|
if self.preemphasis == 0.:
|
|
|
|
raise RuntimeError(" !! Preemphasis coefficient should be positive. ")
|
|
|
|
return scipy.signal.lfilter([1., -self.preemphasis], [1.], x)
|
|
|
|
|
|
|
|
def apply_inv_preemphasis(self, x):
|
|
|
|
if self.preemphasis == 0.:
|
|
|
|
raise RuntimeError(" !! Preemphasis coefficient should be positive. ")
|
|
|
|
return scipy.signal.lfilter([1.], [1., -self.preemphasis], x)
|
|
|
|
|
|
|
|
def _amplitude_to_db(self, x):
|
|
|
|
amplitude_min = np.exp(self.min_level_db / 20 * np.log(10))
|
|
|
|
return 20 * np.log10(np.maximum(amplitude_min, x))
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _db_to_amplitude(x):
|
|
|
|
return np.power(10., 0.05 * x)
|
|
|
|
|
|
|
|
def _linear_to_mel(self, spectrogram):
|
|
|
|
_mel_basis = self._build_mel_basis()
|
|
|
|
return np.dot(_mel_basis, spectrogram)
|
|
|
|
|
|
|
|
def _mel_to_linear(self, mel_spectrogram):
|
|
|
|
inv_mel_basis = np.linalg.pinv(self._build_mel_basis())
|
|
|
|
return np.maximum(1e-10, np.dot(inv_mel_basis, mel_spectrogram))
|
|
|
|
|
|
|
|
def _build_mel_basis(self):
|
|
|
|
"""return mel basis for mel scale"""
|
|
|
|
if self.mel_fmax is not None:
|
|
|
|
assert self.mel_fmax <= self.sample_rate // 2
|
|
|
|
return librosa.filters.mel(
|
|
|
|
self.sample_rate,
|
|
|
|
self.n_fft,
|
|
|
|
n_mels=self.num_mels,
|
|
|
|
fmin=self.mel_fmin,
|
|
|
|
fmax=self.mel_fmax)
|
|
|
|
|
|
|
|
def _normalize(self, S):
|
|
|
|
"""put values in [0, self.max_norm] or [-self.max_norm, self,max_norm]"""
|
|
|
|
if self.signal_norm:
|
|
|
|
S_norm = (S - self.min_level_db) / (-self.min_level_db)
|
|
|
|
if self.symmetric_norm:
|
|
|
|
S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
|
|
|
|
if self.clip_norm:
|
|
|
|
S_norm = np.clip(S_norm, -self.max_norm, self.max_norm)
|
|
|
|
return S_norm
|
|
|
|
else:
|
|
|
|
S_norm = self.max_norm * S_norm
|
|
|
|
if self.clip_norm:
|
|
|
|
S_norm = np.clip(S_norm, 0, self.max_norm)
|
|
|
|
return S_norm
|
|
|
|
else:
|
|
|
|
return S
|
|
|
|
|
|
|
|
def _denormalize(self, S):
|
|
|
|
"""denormalize values"""
|
|
|
|
S_denorm = S
|
|
|
|
if self.signal_norm:
|
|
|
|
if self.symmetric_norm:
|
|
|
|
if self.clip_norm:
|
|
|
|
S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm)
|
|
|
|
S_denorm = (S_denorm + self.max_norm) * (-self.min_level_db) / (2 * self.max_norm) + self.min_level_db
|
|
|
|
return S_denorm
|
|
|
|
else:
|
|
|
|
if self.clip_norm:
|
|
|
|
S_denorm = np.clip(S_denorm, 0, self.max_norm)
|
|
|
|
S_denorm = S_denorm * (-self.min_level_db)/ self.max_norm + self.min_level_db
|
|
|
|
return S_denorm
|
|
|
|
else:
|
|
|
|
return S
|
|
|
|
|
|
|
|
def _stft(self, y):
|
|
|
|
return librosa.stft(
|
|
|
|
y=y,
|
|
|
|
n_fft=self.n_fft,
|
|
|
|
win_length=self.win_length,
|
|
|
|
hop_length=self.hop_length)
|
|
|
|
|
|
|
|
def _istft(self, S):
|
|
|
|
return librosa.istft(S, hop_length=self.hop_length, win_length=self.win_length)
|
|
|
|
|
|
|
|
def spectrogram(self, y):
|
|
|
|
"""compute linear spectrogram(amplitude)
|
|
|
|
preemphasis -> stft -> mag -> amplitude_to_db -> minus_ref_level_db -> normalize
|
|
|
|
"""
|
|
|
|
if self.preemphasis:
|
|
|
|
D = self._stft(self.apply_preemphasis(y))
|
|
|
|
else:
|
|
|
|
D = self._stft(y)
|
|
|
|
S = self._amplitude_to_db(np.abs(D)) - self.ref_level_db
|
|
|
|
return self._normalize(S)
|
|
|
|
|
|
|
|
def melspectrogram(self, y):
|
|
|
|
"""compute linear spectrogram(amplitude)
|
|
|
|
preemphasis -> stft -> mag -> mel_scale -> amplitude_to_db -> minus_ref_level_db -> normalize
|
|
|
|
"""
|
|
|
|
if self.preemphasis:
|
|
|
|
D = self._stft(self.apply_preemphasis(y))
|
|
|
|
else:
|
|
|
|
D = self._stft(y)
|
|
|
|
S = self._amplitude_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db
|
|
|
|
return self._normalize(S)
|
|
|
|
|
|
|
|
def inv_spectrogram(self, spectrogram):
|
|
|
|
"""convert spectrogram back to waveform using griffin_lim in librosa"""
|
|
|
|
S = self._denormalize(spectrogram)
|
|
|
|
S = self._db_to_amplitude(S + self.ref_level_db)
|
|
|
|
if self.preemphasis:
|
|
|
|
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
|
|
|
|
return self._griffin_lim(S ** self.power)
|
|
|
|
|
|
|
|
def inv_melspectrogram(self, mel_spectrogram):
|
|
|
|
S = self._denormalize(mel_spectrogram)
|
|
|
|
S = self._db_to_amplitude(S + self.ref_level_db)
|
2020-01-22 15:46:35 +08:00
|
|
|
S = self._mel_to_linear(np.abs(S))
|
2019-12-17 14:23:34 +08:00
|
|
|
if self.preemphasis:
|
|
|
|
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
|
|
|
|
return self._griffin_lim(S ** self.power)
|
|
|
|
|
|
|
|
def out_linear_to_mel(self, linear_spec):
|
|
|
|
"""convert output linear spec to mel spec"""
|
|
|
|
S = self._denormalize(linear_spec)
|
|
|
|
S = self._db_to_amplitude(S + self.ref_level_db)
|
|
|
|
S = self._linear_to_mel(np.abs(S))
|
|
|
|
S = self._amplitude_to_db(S) - self.ref_level_db
|
|
|
|
mel = self._normalize(S)
|
|
|
|
return mel
|
|
|
|
|
|
|
|
def _griffin_lim(self, S):
|
|
|
|
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
|
|
|
|
S_complex = np.abs(S).astype(np.complex)
|
|
|
|
y = self._istft(S_complex * angles)
|
|
|
|
for _ in range(self.griffin_lim_iters):
|
|
|
|
angles = np.exp(1j * np.angle(self._stft(y)))
|
|
|
|
y = self._istft(S_complex * angles)
|
|
|
|
return y
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def mulaw_encode(wav, qc):
|
|
|
|
mu = 2 ** qc - 1
|
|
|
|
# wav_abs = np.minimum(np.abs(wav), 1.0)
|
|
|
|
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu)
|
|
|
|
# Quantize signal to the specified number of levels.
|
|
|
|
signal = (signal + 1) / 2 * mu + 0.5
|
|
|
|
return np.floor(signal,)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def mulaw_decode(wav, qc):
|
|
|
|
"""Recovers waveform from quantized values."""
|
|
|
|
mu = 2 ** qc - 1
|
|
|
|
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
|
|
|
|
return x
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def encode_16bits(x):
|
|
|
|
return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def quantize(x, bits):
|
|
|
|
return (x + 1.) * (2**bits - 1) / 2
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def dequantize(x, bits):
|
|
|
|
return 2 * x / (2**bits - 1) - 1
|