remove task-specific Datasets and add a general purpose DataTable
This commit is contained in:
parent
3bf2e71734
commit
13ab0bd608
|
@ -1,133 +0,0 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Union, Optional, Callable, Tuple
|
||||
from pathlib import Path
|
||||
from multiprocessing import Manager
|
||||
|
||||
import numpy as np
|
||||
from paddle.io import Dataset
|
||||
import logging
|
||||
|
||||
|
||||
class AudioDataset(Dataset):
|
||||
"""Dataset to load audio.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
root_dir : Union[Path, str]
|
||||
The root of the dataset.
|
||||
audio_pattern : str
|
||||
A pattern to recursively find all audio files, by default "*-wave.npy"
|
||||
audio_length_threshold : int, optional
|
||||
The minmimal length(number of samples) of the audio, by default None
|
||||
audio_load_fn : Callable, optional
|
||||
Function to load the audio, which takes a Path object or str as input,
|
||||
by default np.load
|
||||
return_utt_id : bool, optional
|
||||
Whether to include utterance indentifier in the return value of
|
||||
__getitem__, by default False
|
||||
use_cache : bool, optional
|
||||
Whether to cache seen examples while reading, by default False
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
root_dir: Union[Path, str],
|
||||
audio_pattern: str="*-wave.npy",
|
||||
audio_length_threshold: Optional[int]=None,
|
||||
audio_load_fn: Callable=np.load,
|
||||
return_utt_id: bool=False,
|
||||
use_cache: bool=False, ):
|
||||
# allow str and Path that contains '~'
|
||||
root_dir = Path(root_dir).expanduser()
|
||||
|
||||
# recursively find all of audio files that match thr pattern
|
||||
audio_files = sorted(list(root_dir.rglob(audio_pattern)))
|
||||
|
||||
# filter by threshold
|
||||
if audio_length_threshold is not None:
|
||||
audio_lengths = [audio_load_fn(f).shape[0] for f in audio_files]
|
||||
idxs = [
|
||||
idx for idx in range(len(audio_files))
|
||||
if audio_lengths[idx] > audio_length_threshold
|
||||
]
|
||||
if len(audio_files) != len(idxs):
|
||||
logging.warning(
|
||||
f"some files are filtered by audio length threshold "
|
||||
f"({len(audio_files)} -> {len(idxs)}).")
|
||||
audio_files = [audio_files[idx] for idx in idxs]
|
||||
|
||||
# assert the number of files
|
||||
assert len(
|
||||
audio_files) != 0, f"Not any audio files found in {root_dir}."
|
||||
|
||||
self.audio_files = audio_files
|
||||
self.audio_load_fn = audio_load_fn
|
||||
self.return_utt_id = return_utt_id
|
||||
# TODO(chenfeiyu): better strategy to get utterance id
|
||||
if ".npy" in audio_pattern:
|
||||
self.utt_ids = [
|
||||
f.name.replace("-wave.npy", "") for f in audio_files
|
||||
]
|
||||
else:
|
||||
self.utt_ids = [f.stem for f in audio_files]
|
||||
self.use_cache = use_cache
|
||||
if use_cache:
|
||||
# use manager to share object between multiple processes
|
||||
# avoid per-reader process caching
|
||||
self.manager = Manager()
|
||||
self.caches = self.manager.list()
|
||||
self.caches += [None for _ in range(len(audio_files))]
|
||||
|
||||
def __getitem__(self, idx: int) -> Tuple[str, np.ndarray]:
|
||||
"""Get an example given the index.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
idx : int
|
||||
The index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
utt_id : str
|
||||
Utterance identifier.
|
||||
audio : np.ndarray
|
||||
Shape (n_samples, ), the audio.
|
||||
"""
|
||||
if self.use_cache and self.caches[idx] is not None:
|
||||
return self.caches[idx]
|
||||
|
||||
utt_id = self.utt_ids[idx]
|
||||
audio = self.audio_load_fn(self.audio_files[idx])
|
||||
|
||||
if self.return_utt_id:
|
||||
items = utt_id, audio
|
||||
else:
|
||||
items = audio
|
||||
|
||||
if self.use_cache:
|
||||
self.caches[idx] = items
|
||||
|
||||
return items
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Returns the size of the dataset.
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
The length of the dataset
|
||||
"""
|
||||
return len(self.audio_files)
|
|
@ -1,161 +0,0 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Union, Optional, Callable, Tuple, Any
|
||||
from pathlib import Path
|
||||
from multiprocessing import Manager
|
||||
|
||||
import numpy as np
|
||||
from paddle.io import Dataset
|
||||
import logging
|
||||
|
||||
|
||||
class AudioMelDataset(Dataset):
|
||||
"""Dataset to laod audio and mel dataset.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
root_dir : Union[Path, str]
|
||||
The root of the dataset.
|
||||
audio_pattern : str, optional
|
||||
A pattern to recursively find all audio files, by default
|
||||
"*-wave.npy"
|
||||
mel_pattern : str, optional
|
||||
A pattern to recursively find all mel feature files, by default
|
||||
"*-mel.npy"
|
||||
audio_load_fn : Callable, optional
|
||||
Function to load the audio, which takes a Path object or str as
|
||||
input, by default np.load
|
||||
mel_load_fn : Callable, optional
|
||||
Function to load the mel features, which takes a Path object or
|
||||
str as input, by default np.load
|
||||
audio_length_threshold : Optional[int], optional
|
||||
The minmimal length(number of samples) of the audio, by default None
|
||||
mel_length_threshold : Optional[int], optional
|
||||
The minmimal length(number of frames) of the audio, by default None
|
||||
return_utt_id : bool, optional
|
||||
Whether to include utterance indentifier in the return value of
|
||||
__getitem__, by default False
|
||||
use_cache : bool, optional
|
||||
Whether to cache seen examples while reading, by default False
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
root_dir: Union[Path, str],
|
||||
audio_pattern: str="*-wave.npy",
|
||||
mel_pattern: str="*-mel.npy",
|
||||
audio_load_fn: Callable=np.load,
|
||||
mel_load_fn: Callable=np.load,
|
||||
audio_length_threshold: Optional[int]=None,
|
||||
mel_length_threshold: Optional[int]=None,
|
||||
return_utt_id: bool=False,
|
||||
use_cache: bool=False):
|
||||
root_dir = Path(root_dir).expanduser()
|
||||
# find all of audio and mel files
|
||||
audio_files = sorted(list(root_dir.rglob(audio_pattern)))
|
||||
mel_files = sorted(list(root_dir.rglob(mel_pattern)))
|
||||
|
||||
# filter by threshold
|
||||
if audio_length_threshold is not None:
|
||||
audio_lengths = [audio_load_fn(f).shape[0] for f in audio_files]
|
||||
idxs = [
|
||||
idx for idx in range(len(audio_files))
|
||||
if audio_lengths[idx] > audio_length_threshold
|
||||
]
|
||||
if len(audio_files) != len(idxs):
|
||||
logging.warning(
|
||||
f"Some files are filtered by audio length threshold "
|
||||
f"({len(audio_files)} -> {len(idxs)}).")
|
||||
audio_files = [audio_files[idx] for idx in idxs]
|
||||
mel_files = [mel_files[idx] for idx in idxs]
|
||||
if mel_length_threshold is not None:
|
||||
mel_lengths = [mel_load_fn(f).shape[1] for f in mel_files]
|
||||
idxs = [
|
||||
idx for idx in range(len(mel_files))
|
||||
if mel_lengths[idx] > mel_length_threshold
|
||||
]
|
||||
if len(mel_files) != len(idxs):
|
||||
logging.warning(
|
||||
f"Some files are filtered by mel length threshold "
|
||||
f"({len(mel_files)} -> {len(idxs)}).")
|
||||
audio_files = [audio_files[idx] for idx in idxs]
|
||||
mel_files = [mel_files[idx] for idx in idxs]
|
||||
|
||||
# assert the number of files
|
||||
assert len(
|
||||
audio_files) != 0, f"Not found any audio files in {root_dir}."
|
||||
assert len(audio_files) == len(mel_files), \
|
||||
(f"Number of audio and mel files are different "
|
||||
f"({len(audio_files)} vs {len(mel_files)}).")
|
||||
|
||||
self.audio_files = audio_files
|
||||
self.audio_load_fn = audio_load_fn
|
||||
self.mel_load_fn = mel_load_fn
|
||||
self.mel_files = mel_files
|
||||
if ".npy" in audio_pattern:
|
||||
self.utt_ids = [
|
||||
f.name.replace("-wave.npy", "") for f in audio_files
|
||||
]
|
||||
else:
|
||||
self.utt_ids = [f.stem for f in audio_files]
|
||||
self.return_utt_id = return_utt_id
|
||||
self.use_cache = use_cache
|
||||
if use_cache:
|
||||
self.manager = Manager()
|
||||
self.caches = self.manager.list()
|
||||
self.caches += [None for _ in range(len(audio_files))]
|
||||
|
||||
def __getitem__(self, idx: int) -> Tuple:
|
||||
"""Get an example given the index.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
idx : int
|
||||
The index of the example.
|
||||
|
||||
Returns
|
||||
-------
|
||||
utt_id : str
|
||||
Utterance identifier.
|
||||
audio : np.ndarray
|
||||
Shape (n_samples, ), the audio.
|
||||
mel: np.ndarray
|
||||
Shape (n_mels, n_frames), the mel spectrogram.
|
||||
"""
|
||||
if self.use_cache and self.caches[idx] is not None:
|
||||
return self.caches[idx]
|
||||
|
||||
utt_id = self.utt_ids[idx]
|
||||
audio = self.audio_load_fn(self.audio_files[idx])
|
||||
mel = self.mel_load_fn(self.mel_files[idx])
|
||||
|
||||
if self.return_utt_id:
|
||||
items = utt_id, audio, mel
|
||||
else:
|
||||
items = audio, mel
|
||||
|
||||
if self.use_cache:
|
||||
self.caches[idx] = items
|
||||
|
||||
return items
|
||||
|
||||
def __len__(self):
|
||||
"""Returns the size of the dataset.
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
The length of the dataset
|
||||
"""
|
||||
return len(self.audio_files)
|
|
@ -0,0 +1,150 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Union, Optional, Callable, Tuple, List, Dict, Any
|
||||
from pathlib import Path
|
||||
from multiprocessing import Manager
|
||||
|
||||
import numpy as np
|
||||
from paddle.io import Dataset
|
||||
|
||||
|
||||
class DataTable(Dataset):
|
||||
def __init__(self,
|
||||
data: List[Dict[str, Any]],
|
||||
fields: List[str]=None,
|
||||
converters: Dict[str, Callable]=None,
|
||||
use_cache: bool=False):
|
||||
"""Dataset to load and convert data for general purpose.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : List[Dict[str, Any]]
|
||||
Metadata, a list of meta datum, each of which is composed of
|
||||
several fields
|
||||
fields : List[str], optional
|
||||
Fields to use, if not specified, all the fields in the data are
|
||||
used, by default None
|
||||
converters : Dict[str, Callable], optional
|
||||
Converters used to process each field, by default None
|
||||
use_cache : bool, optional
|
||||
Whether to use cache, by default False
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If there is some field that does not exist in data.
|
||||
ValueError
|
||||
If there is some field in converters that does not exist in fields.
|
||||
"""
|
||||
# metadata
|
||||
self.data = data
|
||||
assert len(data) > 0, "This dataset has no examples"
|
||||
|
||||
# peak an example to get existing fields.
|
||||
first_example = self.data[0]
|
||||
fields_in_data = first_example.keys()
|
||||
|
||||
# check all the requested fields exist
|
||||
if fields is None:
|
||||
self.fields = fields_in_data
|
||||
else:
|
||||
for field in fields:
|
||||
if field not in fields_in_data:
|
||||
raise ValueError(
|
||||
f"The requested field ({field}) is not found"
|
||||
f"in the data. Fields in the data is {fields_in_data}")
|
||||
self.fields = fields
|
||||
|
||||
# check converters
|
||||
if converters is None:
|
||||
self.converters = {}
|
||||
else:
|
||||
for field in converters.keys():
|
||||
if field not in self.fields:
|
||||
raise ValueError(
|
||||
f"The converter has a non existing field ({field})")
|
||||
self.converters = converters
|
||||
|
||||
self.use_cache = use_cache
|
||||
if use_cache:
|
||||
self._initialize_cache()
|
||||
|
||||
def _initialize_cache(self):
|
||||
self.manager = Manager()
|
||||
self.caches = self.manager.list()
|
||||
self.caches += [None for _ in range(len(self))]
|
||||
|
||||
def _get_metadata(self, idx: int) -> Dict[str, Any]:
|
||||
"""Return a meta-datum given an index."""
|
||||
return self.data[idx]
|
||||
|
||||
def _convert(self, meta_datum: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Convert a meta datum to an example by applying the corresponding
|
||||
converters to each fields requested.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
meta_datum : Dict[str, Any]
|
||||
Meta datum
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, Any]
|
||||
Converted example
|
||||
"""
|
||||
example = {}
|
||||
for field in self.fields:
|
||||
converter = self.converters.get(field, None)
|
||||
meta_datum_field = meta_datum[field]
|
||||
if converter is not None:
|
||||
converted_field = converter(meta_datum_field)
|
||||
else:
|
||||
converted_field = meta_datum_field
|
||||
example[field] = converted_field
|
||||
return example
|
||||
|
||||
def __getitem__(self, idx: int) -> Dict[str, Any]:
|
||||
"""Get an example given an index.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
idx : int
|
||||
Index of the example to get
|
||||
|
||||
Returns
|
||||
-------
|
||||
Dict[str, Any]
|
||||
A converted example
|
||||
"""
|
||||
if self.use_cache and self.caches[idx] is not None:
|
||||
return self.caches[idx]
|
||||
|
||||
meta_datum = self._get_metadata(idx)
|
||||
example = self._convert(meta_datum)
|
||||
|
||||
if self.use_cache:
|
||||
self.caches[idx] = example
|
||||
|
||||
return example
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Returns the size of the dataset.
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
The length of the dataset
|
||||
"""
|
||||
return len(self.data)
|
|
@ -1,132 +0,0 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Union, Optional, Callable, Tuple
|
||||
from pathlib import Path
|
||||
from multiprocessing import Manager
|
||||
|
||||
import numpy as np
|
||||
from paddle.io import Dataset
|
||||
import logging
|
||||
|
||||
|
||||
class MelDataset(Dataset):
|
||||
"""Dataset to load mel-spectrograms.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
root_dir : Union[Path, str]
|
||||
The root of the dataset.
|
||||
mel_pattern : str, optional
|
||||
A pattern to recursively find all mel feature files, by default
|
||||
"*-feats.npy"
|
||||
mel_length_threshold : Optional[int], optional
|
||||
The minmimal length(number of frames) of the audio, by default None
|
||||
mel_load_fn : Callable, optional
|
||||
Function to load the audio, which takes a Path object or str as input,
|
||||
by default np.load
|
||||
return_utt_id : bool, optional
|
||||
Whether to include utterance indentifier in the return value of
|
||||
__getitem__, by default False
|
||||
use_cahce : bool, optional
|
||||
Whether to cache seen examples while reading, by default False
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
root_dir: Union[Path, str],
|
||||
mel_pattern: str="*-feats.npy",
|
||||
mel_length_threshold: Optional[int]=None,
|
||||
mel_load_fn: Callable=np.load,
|
||||
return_utt_id: bool=False,
|
||||
use_cahce: bool=False, ):
|
||||
# allow str and Path that contains '~'
|
||||
root_dir = Path(root_dir).expanduser()
|
||||
|
||||
# find all of the mel files
|
||||
mel_files = sorted(list(root_dir.rglob(mel_pattern)))
|
||||
|
||||
# filter by threshold
|
||||
if mel_length_threshold is not None:
|
||||
mel_lengths = [mel_load_fn(f).shape[1] for f in mel_files]
|
||||
idxs = [
|
||||
idx for idx in range(len(mel_files))
|
||||
if mel_lengths[idx] > mel_length_threshold
|
||||
]
|
||||
if len(mel_files) != len(idxs):
|
||||
logging.warning(
|
||||
f"Some files are filtered by mel length threshold "
|
||||
f"({len(mel_files)} -> {len(idxs)}).")
|
||||
mel_files = [mel_files[idx] for idx in idxs]
|
||||
|
||||
# assert the number of files
|
||||
assert len(mel_files) != 0, f"Not found any mel files in {root_dir}."
|
||||
|
||||
self.mel_files = mel_files
|
||||
self.mel_load_fn = mel_load_fn
|
||||
|
||||
# TODO(chenfeiyu): better strategy to get utterance id
|
||||
if ".npy" in mel_pattern:
|
||||
self.utt_ids = [
|
||||
f.name.replace("-feats.npy", "") for f in mel_files
|
||||
]
|
||||
else:
|
||||
self.utt_ids = [f.stem for f in mel_files]
|
||||
self.return_utt_id = return_utt_id
|
||||
self.use_cache = use_cahce
|
||||
if use_cahce:
|
||||
self.manager = Manager()
|
||||
self.caches = self.manager.list()
|
||||
self.caches += [None for _ in range(len(mel_files))]
|
||||
|
||||
def __getitem__(self, idx):
|
||||
"""Get an example given the index.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
idx : int
|
||||
The index
|
||||
|
||||
Returns
|
||||
-------
|
||||
utt_id : str
|
||||
Utterance identifier.
|
||||
audio : np.ndarray
|
||||
Shape (n_mels, n_frames), the mel spectrogram.
|
||||
"""
|
||||
if self.use_cache and self.caches[idx] is not None:
|
||||
return self.caches[idx]
|
||||
|
||||
utt_id = self.utt_ids[idx]
|
||||
mel = self.mel_load_fn(self.mel_files[idx])
|
||||
|
||||
if self.return_utt_id:
|
||||
items = utt_id, mel
|
||||
else:
|
||||
items = mel
|
||||
|
||||
if self.use_cache:
|
||||
self.caches[idx] = items
|
||||
|
||||
return items
|
||||
|
||||
def __len__(self):
|
||||
"""Returns the size of the dataset.
|
||||
|
||||
Returns
|
||||
-------
|
||||
int
|
||||
The length of the dataset
|
||||
"""
|
||||
return len(self.mel_files)
|
|
@ -0,0 +1,22 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from parakeet.datasets.data_tabel import DataTable
|
||||
|
||||
|
||||
def test_audio_dataset():
|
||||
metadata = [{'name': 'Sonic', 'v': 1000}, {'name': 'Prestol', 'v': 2000}]
|
||||
converters = {'v': lambda x: x / 1000}
|
||||
dataset = DataTable(metadata, fields=['v'], converters=converters)
|
||||
assert dataset[0] == {'v': 1.0}
|
Loading…
Reference in New Issue