add docstring for LocationSensitiveAttention

This commit is contained in:
lfchener 2020-12-18 17:28:06 +08:00
parent dd2c5cc6c6
commit 1af9127ee6
2 changed files with 179 additions and 129 deletions

View File

@ -32,16 +32,16 @@ class DecoderPreNet(nn.Layer):
Parameters
----------
d_input: int
input feature size
The input feature size.
d_hidden: int
hidden size
The hidden size.
d_output: int
output feature size
The output feature size.
dropout_rate: float
droput probability
The droput probability.
"""
@ -49,7 +49,7 @@ class DecoderPreNet(nn.Layer):
d_input: int,
d_hidden: int,
d_output: int,
dropout_rate: float=0.2):
dropout_rate: float):
super().__init__()
self.dropout_rate = dropout_rate
@ -62,12 +62,12 @@ class DecoderPreNet(nn.Layer):
Parameters
----------
x: Tensor [shape=(B, T_mel, C)]
batch of the sequences of padded mel spectrogram
Batch of the sequences of padded mel spectrogram.
Returns
-------
output: Tensor [shape=(B, T_mel, C)]
batch of the sequences of padded hidden state
Batch of the sequences of padded hidden state.
"""
@ -82,28 +82,28 @@ class DecoderPostNet(nn.Layer):
Parameters
----------
d_mels: int
number of mel bands
The number of mel bands.
d_hidden: int
hidden size of postnet
The hidden size of postnet.
kernel_size: int
kernel size of the conv layer in postnet
The kernel size of the conv layer in postnet.
num_layers: int
number of conv layers in postnet
The number of conv layers in postnet.
dropout: float
droput probability
The droput probability.
"""
def __init__(self,
d_mels: int=80,
d_hidden: int=512,
kernel_size: int=5,
num_layers: int=5,
dropout: float=0.1):
d_mels: int,
d_hidden: int,
kernel_size: int,
num_layers: int,
dropout: float):
super().__init__()
self.dropout = dropout
self.num_layers = num_layers
@ -150,12 +150,12 @@ class DecoderPostNet(nn.Layer):
Parameters
----------
input: Tensor [shape=(B, T_mel, C)]
output sequence of features from decoder
Output sequence of features from decoder.
Returns
-------
output: Tensor [shape=(B, T_mel, C)]
output sequence of features after postnet
Output sequence of features after postnet.
"""
@ -173,16 +173,16 @@ class Tacotron2Encoder(nn.Layer):
Parameters
----------
d_hidden: int
hidden size in encoder module
The hidden size in encoder module.
conv_layers: int
number of conv layers
The number of conv layers.
kernel_size: int
kernel size of conv layers
The kernel size of conv layers.
p_dropout: float
droput probability
The droput probability.
"""
def __init__(self,
@ -216,15 +216,15 @@ class Tacotron2Encoder(nn.Layer):
Parameters
----------
x: Tensor [shape=(B, T)]
batch of the sequencees of padded character ids
Batch of the sequencees of padded character ids.
text_lens: Tensor [shape=(B,)]
batch of lengths of each text input batch.
text_lens: Tensor [shape=(B,)], optional
Batch of lengths of each text input batch. Defaults to None.
Returns
-------
output : Tensor [shape=(B, T, C)]
batch of the sequences of padded hidden states
Batch of the sequences of padded hidden states.
"""
for conv_batchnorm in self.conv_batchnorms:
@ -241,40 +241,40 @@ class Tacotron2Decoder(nn.Layer):
Parameters
----------
d_mels: int
number of mel bands
The number of mel bands.
reduction_factor: int
reduction factor of tacotron
The reduction factor of tacotron.
d_encoder: int
hidden size of encoder
The hidden size of encoder.
d_prenet: int
hidden size in decoder prenet
The hidden size in decoder prenet.
d_attention_rnn: int
attention rnn layer hidden size
The attention rnn layer hidden size.
d_decoder_rnn: int
decoder rnn layer hidden size
The decoder rnn layer hidden size.
d_attention: int
hidden size of the linear layer in location sensitive attention
The hidden size of the linear layer in location sensitive attention.
attention_filters: int
filter size of the conv layer in location sensitive attention
The filter size of the conv layer in location sensitive attention.
attention_kernel_size: int
kernel size of the conv layer in location sensitive attention
The kernel size of the conv layer in location sensitive attention.
p_prenet_dropout: float
droput probability in decoder prenet
The droput probability in decoder prenet.
p_attention_dropout: float
droput probability in location sensitive attention
The droput probability in location sensitive attention.
p_decoder_dropout: float
droput probability in decoder
The droput probability in decoder.
"""
def __init__(self,
@ -382,25 +382,25 @@ class Tacotron2Decoder(nn.Layer):
Parameters
----------
keys: Tensor[shape=(B, T_text, C)]
batch of the sequences of padded output from encoder
keys: Tensor[shape=(B, T_key, C)]
Batch of the sequences of padded output from encoder.
querys: Tensor[shape(B, T_mel, C)]
batch of the sequences of padded mel spectrogram
querys: Tensor[shape(B, T_query, C)]
Batch of the sequences of padded mel spectrogram.
mask: Tensor[shape=(B, T_text, 1)]
mask generated with text length
mask: Tensor
Mask generated with text length. Shape should be (B, T_key, T_query) or broadcastable shape.
Returns
-------
mel_output: Tensor [shape=(B, T_mel, C)]
output sequence of features
mel_output: Tensor [shape=(B, T_query, C)]
Output sequence of features.
stop_logits: Tensor [shape=(B, T_mel)]
output sequence of stop logits
stop_logits: Tensor [shape=(B, T_query)]
Output sequence of stop logits.
alignments: Tensor [shape=(B, T_mel, T_text)]
attention weights
alignments: Tensor [shape=(B, T_query, T_key)]
Attention weights.
"""
querys = paddle.reshape(
querys,
@ -437,25 +437,25 @@ class Tacotron2Decoder(nn.Layer):
Parameters
----------
keys: Tensor [shape=(B, T_text, C)]
batch of the sequences of padded output from encoder
keys: Tensor [shape=(B, T_key, C)]
Batch of the sequences of padded output from encoder.
stop_threshold: float
stop synthesize when stop logit is greater than this stop threshold
stop_threshold: float, optional
Stop synthesize when stop logit is greater than this stop threshold. Defaults to 0.5.
max_decoder_steps: int
number of max step when synthesize
max_decoder_steps: int, optional
Number of max step when synthesize. Defaults to 1000.
Returns
-------
mel_output: Tensor [shape=(B, T_mel, C)]
output sequence of features
Output sequence of features.
stop_logits: Tensor [shape=(B, T_mel)]
output sequence of stop logits
Output sequence of stop logits.
alignments: Tensor [shape=(B, T_mel, T_text)]
attention weights
alignments: Tensor [shape=(B, T_mel, T_key)]
Attention weights.
"""
query = paddle.zeros(
@ -493,75 +493,72 @@ class Tacotron2(nn.Layer):
"""Tacotron2 model for end-to-end text-to-speech (E2E-TTS).
This is a model of Spectrogram prediction network in Tacotron2 described
in ``Natural TTS Synthesis
by Conditioning WaveNet on Mel Spectrogram Predictions``,
in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions
<https://arxiv.org/abs/1712.05884>`_,
which converts the sequence of characters
into the sequence of mel spectrogram.
`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions
<https://arxiv.org/abs/1712.05884>`_.
Parameters
----------
frontend : parakeet.frontend.Phonetics
frontend used to preprocess text
Frontend used to preprocess text.
d_mels: int
number of mel bands
Number of mel bands.
d_encoder: int
hidden size in encoder module
Hidden size in encoder module.
encoder_conv_layers: int
number of conv layers in encoder
Number of conv layers in encoder.
encoder_kernel_size: int
kernel size of conv layers in encoder
Kernel size of conv layers in encoder.
d_prenet: int
hidden size in decoder prenet
Hidden size in decoder prenet.
d_attention_rnn: int
attention rnn layer hidden size in decoder
Attention rnn layer hidden size in decoder.
d_decoder_rnn: int
decoder rnn layer hidden size in decoder
Decoder rnn layer hidden size in decoder.
attention_filters: int
filter size of the conv layer in location sensitive attention
Filter size of the conv layer in location sensitive attention.
attention_kernel_size: int
kernel size of the conv layer in location sensitive attention
Kernel size of the conv layer in location sensitive attention.
d_attention: int
hidden size of the linear layer in location sensitive attention
Hidden size of the linear layer in location sensitive attention.
d_postnet: int
hidden size of postnet
Hidden size of postnet.
postnet_kernel_size: int
kernel size of the conv layer in postnet
Kernel size of the conv layer in postnet.
postnet_conv_layers: int
number of conv layers in postnet
Number of conv layers in postnet.
reduction_factor: int
reduction factor of tacotron
Reduction factor of tacotron2.
p_encoder_dropout: float
droput probability in encoder
Droput probability in encoder.
p_prenet_dropout: float
droput probability in decoder prenet
Droput probability in decoder prenet.
p_attention_dropout: float
droput probability in location sensitive attention
Droput probability in location sensitive attention.
p_decoder_dropout: float
droput probability in decoder
Droput probability in decoder.
p_postnet_dropout: float
droput probability in postnet
Droput probability in postnet.
"""
@ -616,28 +613,28 @@ class Tacotron2(nn.Layer):
Parameters
----------
text_inputs: Tensor [shape=(B, T_text)]
batch of the sequencees of padded character ids
Batch of the sequencees of padded character ids.
mels: Tensor [shape(B, T_mel, C)]
batch of the sequences of padded mel spectrogram
Batch of the sequences of padded mel spectrogram.
text_lens: Tensor [shape=(B,)]
batch of lengths of each text input batch.
Batch of lengths of each text input batch.
output_lens: Tensor [shape=(B,)]
batch of lengths of each mels batch.
output_lens: Tensor [shape=(B,)], optional
Batch of lengths of each mels batch. Defaults to None.
Returns
-------
outputs : Dict[str, Tensor]
mel_output: output sequence of features (B, T_mel, C)
mel_output: output sequence of features (B, T_mel, C);
mel_outputs_postnet: output sequence of features after postnet (B, T_mel, C)
mel_outputs_postnet: output sequence of features after postnet (B, T_mel, C);
stop_logits: output sequence of stop logits (B, T_mel)
stop_logits: output sequence of stop logits (B, T_mel);
alignments: attention weights (B, T_mel, T_text)
alignments: attention weights (B, T_mel, T_text).
"""
embedded_inputs = self.embedding(text_inputs)
encoder_outputs = self.encoder(embedded_inputs, text_lens)
@ -675,25 +672,25 @@ class Tacotron2(nn.Layer):
Parameters
----------
text_inputs: Tensor [shape=(B, T_text)]
batch of the sequencees of padded character ids
Batch of the sequencees of padded character ids.
stop_threshold: float
stop synthesize when stop logit is greater than this stop threshold
stop_threshold: float, optional
Stop synthesize when stop logit is greater than this stop threshold. Defaults to 0.5.
max_decoder_steps: int
number of max step when synthesize
max_decoder_steps: int, optional
Number of max step when synthesize. Defaults to 1000.
Returns
-------
outputs : Dict[str, Tensor]
mel_output: output sequence of sepctrogram (B, T_mel, C)
mel_output: output sequence of sepctrogram (B, T_mel, C);
mel_outputs_postnet: output sequence of sepctrogram after postnet (B, T_mel, C)
mel_outputs_postnet: output sequence of sepctrogram after postnet (B, T_mel, C);
stop_logits: output sequence of stop logits (B, T_mel)
stop_logits: output sequence of stop logits (B, T_mel);
alignments: attention weights (B, T_mel, T_text)
alignments: attention weights (B, T_mel, T_text).
"""
embedded_inputs = self.embedding(text_inputs)
encoder_outputs = self.encoder(embedded_inputs)
@ -721,21 +718,21 @@ class Tacotron2(nn.Layer):
Parameters
----------
text: str
sequence of characters
Sequence of characters.
stop_threshold: float
stop synthesize when stop logit is greater than this stop threshold
stop_threshold: float, optional
Stop synthesize when stop logit is greater than this stop threshold. Defaults to 0.5.
max_decoder_steps: int
number of max step when synthesize
max_decoder_steps: int, optional
Number of max step when synthesize. Defaults to 1000.
Returns
-------
outputs : Dict[str, Tensor]
mel_outputs_postnet: output sequence of sepctrogram after postnet (T_mel, C)
mel_outputs_postnet: output sequence of sepctrogram after postnet (T_mel, C);
alignments: attention weights (T_mel, T_text)
alignments: attention weights (T_mel, T_text).
"""
ids = np.asarray(self.frontend(text))
ids = paddle.unsqueeze(paddle.to_tensor(ids, dtype='int64'), [0])
@ -750,21 +747,21 @@ class Tacotron2(nn.Layer):
Parameters
----------
frontend: parakeet.frontend.Phonetics
frontend used to preprocess text
Frontend used to preprocess text.
config: yacs.config.CfgNode
model configs
Model configs.
checkpoint_path: Path
the path of pretrained model checkpoint
The path of pretrained model checkpoint.
Returns
-------
mel_outputs_postnet: Tensor [shape=(T_mel, C)]
output sequence of sepctrogram after postnet
Output sequence of sepctrogram after postnet.
alignments: Tensor [shape=(T_mel, T_text)]
attention weights
Attention weights.
"""
model = cls(frontend,
d_mels=config.data.d_mels,
@ -805,31 +802,31 @@ class Tacotron2Loss(nn.Layer):
Parameters
----------
mel_outputs: Tensor [shape=(B, T_mel, C)]
output mel spectrogram sequence
Output mel spectrogram sequence.
mel_outputs_postnet: Tensor [shape(B, T_mel, C)]
output mel spectrogram sequence after postnet
Output mel spectrogram sequence after postnet.
stop_logits: Tensor [shape=(B, T_mel)]
output sequence of stop logits befor sigmoid
Output sequence of stop logits befor sigmoid.
mel_targets: Tensor [shape=(B, T_mel, C)]
target mel spectrogram sequence
Target mel spectrogram sequence.
stop_tokens: Tensor [shape=(B,)]
target stop token
Target stop token.
Returns
-------
losses : Dict[str, Tensor]
loss: the sum of the other three losses
loss: the sum of the other three losses;
mel_loss: MSE loss compute by mel_targets and mel_outputs
mel_loss: MSE loss compute by mel_targets and mel_outputs;
post_mel_loss: MSE loss compute by mel_targets and mel_outputs_postnet
post_mel_loss: MSE loss compute by mel_targets and mel_outputs_postnet;
stop_loss: stop loss computed by stop_logits and stop token
stop_loss: stop loss computed by stop_logits and stop token.
"""
mel_loss = paddle.nn.MSELoss()(mel_outputs, mel_targets)
post_mel_loss = paddle.nn.MSELoss()(mel_outputs_postnet, mel_targets)

View File

@ -18,6 +18,7 @@ import paddle
from paddle import nn
from paddle.nn import functional as F
def scaled_dot_product_attention(q,
k,
v,
@ -139,10 +140,11 @@ class MonoheadAttention(nn.Layer):
Feature size of the key of each scaled dot product attention. If not
provided, it is set to `model_dim / num_heads`. Defaults to None.
"""
def __init__(self,
model_dim: int,
dropout: float=0.0,
k_dim: int=None,
def __init__(self,
model_dim: int,
dropout: float=0.0,
k_dim: int=None,
v_dim: int=None):
super(MonoheadAttention, self).__init__()
k_dim = k_dim or model_dim
@ -219,6 +221,7 @@ class MultiheadAttention(nn.Layer):
ValueError
If ``model_dim`` is not divisible by ``num_heads``.
"""
def __init__(self,
model_dim: int,
num_heads: int,
@ -279,6 +282,28 @@ class MultiheadAttention(nn.Layer):
class LocationSensitiveAttention(nn.Layer):
"""Location Sensitive Attention module.
Reference: `Attention-Based Models for Speech Recognition <https://arxiv.org/pdf/1506.07503.pdf>`_
Parameters
-----------
d_query: int
The feature size of query.
d_key : int
The feature size of key.
d_attention : int
The feature size of dimension.
location_filters : int
Filter size of attention convolution.
location_kernel_size : int
Kernel size of attention convolution.
"""
def __init__(self,
d_query: int,
d_key: int,
@ -310,6 +335,34 @@ class LocationSensitiveAttention(nn.Layer):
value,
attention_weights_cat,
mask=None):
"""Compute context vector and attention weights.
Parameters
-----------
query : Tensor [shape=(batch_size, d_query)]
The queries.
processed_key : Tensor [shape=(batch_size, time_steps_k, d_attention)]
The keys after linear layer.
value : Tensor [shape=(batch_size, time_steps_k, d_key)]
The values.
attention_weights_cat : Tensor [shape=(batch_size, time_step_k, 2)]
Attention weights concat.
mask : Tensor, optional
The mask. Shape should be (batch_size, times_steps_q, time_steps_k) or broadcastable shape.
Defaults to None.
Returns
----------
attention_context : Tensor [shape=(batch_size, time_steps_q, d_attention)]
The context vector.
attention_weights : Tensor [shape=(batch_size, times_steps_q, time_steps_k)]
The attention weights.
"""
processed_query = self.query_layer(paddle.unsqueeze(query, axis=[1]))
processed_attention_weights = self.location_layer(