add text frontend example

This commit is contained in:
TianYuan 2021-08-05 09:14:43 +00:00
parent 3ac2e01263
commit 309228ddbf
17 changed files with 827 additions and 104 deletions

View File

@ -1,5 +1,3 @@
# FastSpeech2 with BZNSYP
## Dataset

View File

@ -12,10 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from yacs.config import CfgNode as Configuration
import yaml
with open("conf/default.yaml", 'rt') as f:
config_path = (Path(__file__).parent / "conf" / "default.yaml").resolve()
with open(config_path, 'rt') as f:
_C = yaml.safe_load(f)
_C = Configuration(_C)

View File

@ -58,8 +58,17 @@ class Frontend():
# split tone from finals
match = re.match(r'^(\w+)([012345])$', full_phone)
if match:
phones.append(match.group(1))
tones.append(match.group(2))
phone = match.group(1)
tone = match.group(2)
# if the merged erhua not in the vocab
if len(phone) >= 2 and phone != "er" and phone[
-1] == 'r' and phone not in self.vocab_phones and phone[:
-1] in self.vocab_phones:
phones.append(phone[:-1])
phones.append("er")
else:
tones.append(tone)
tones.append("2")
else:
phones.append(full_phone)
tones.append('0')
@ -67,7 +76,17 @@ class Frontend():
tone_ids = paddle.to_tensor(tone_ids)
result["tone_ids"] = tone_ids
else:
phones = phonemes
# if the merged erhua not in the vocab
phones = []
for phone in phonemes:
if len(phone) >= 3 and phone[:-1] != "er" and phone[
-2] == 'r' and phone not in self.vocab_phones and (
phone[:-2] + phone[-1]) in self.vocab_phones:
phones.append((phone[:-2] + phone[-1]))
phones.append("er2")
else:
phones.append(phone)
phone_ids = self._p2id(phones)
phone_ids = paddle.to_tensor(phone_ids)
result["phone_ids"] = phone_ids

View File

@ -267,7 +267,7 @@ def main():
type=str,
help="directory to baker dataset.")
parser.add_argument(
"--dur-path",
"--dur-file",
default=None,
type=str,
help="path to baker durations.txt.")
@ -308,8 +308,13 @@ def main():
root_dir = Path(args.rootdir).expanduser()
dumpdir = Path(args.dumpdir).expanduser()
dumpdir.mkdir(parents=True, exist_ok=True)
dur_file = Path(args.dur_file).expanduser()
assert root_dir.is_dir()
assert dur_file.is_file()
sentences = get_phn_dur(dur_file)
sentences = get_phn_dur(args.dur_path)
deal_silence(sentences)
phone_id_map_path = dumpdir / "phone_id_map.txt"
get_input_token(sentences, phone_id_map_path)

View File

@ -4,7 +4,7 @@
python3 gen_duration_from_textgrid.py --inputdir ./baker_alignment_tone --output durations.txt
# extract features
python3 preprocess.py --rootdir=~/datasets/BZNSYP/ --dumpdir=dump --dur-path durations.txt --num-cpu 4 --cut-sil True
python3 preprocess.py --rootdir=~/datasets/BZNSYP/ --dumpdir=dump --dur-file durations.txt --num-cpu 4 --cut-sil True
# # get features' stats(mean and std)
python3 compute_statistics.py --metadata=dump/train/raw/metadata.jsonl --field-name="speech"

View File

@ -0,0 +1,20 @@
# Chinese Text Frontend Example
Here's an example for Chinese text frontend, including g2p and text normalization.
## G2P
For g2p, we use BZNSYP's phone label as the ground truth and we delete silence tokens in labels and predicted phones.
You should Download BZNSYP from it's [Official Website](https://test.data-baker.com/data/index/source) and extract it. Assume the path to the dataset is `~/datasets/BZNSYP`.
We use `WER` as evaluation criterion.
## Text Normalization
For text normalization, the test data is `data/textnorm_test_cases.txt`, we use `|` as the separator of raw_data and normed_data.
We use `CER` as evaluation criterion.
## Start
Run the command below to get the results of test.
```bash
./run.sh
```
The `avg WER` of g2p is: 0.02785753389811866
The `avg CER` of text normalization is: 0.014229233983486172

View File

@ -0,0 +1,123 @@
今天的最低气温达到-10°C.|今天的最低气温达到零下十度.
只要有33/4的人同意就可以通过决议。|只要有四分之三十三的人同意,就可以通过决议。
1945年5月2日苏联士兵在德国国会大厦上升起了胜利旗象征着攻占柏林并战胜了纳粹德国。|一九四五年五月二日,苏联士兵在德国国会大厦上升起了胜利旗,象征着攻占柏林并战胜了纳粹德国。
4月16日清晨的战斗以炮击揭幕数以千计的大炮和喀秋莎火箭炮开始炮轰德军阵地炮击持续了数天之久。|四月十六日,清晨的战斗以炮击揭幕,数以千计的大炮和喀秋莎火箭炮开始炮轰德军阵地,炮击持续了数天之久。
如果剩下的30.6%是过去那么还有69.4%.|如果剩下的百分之三十点六是过去,那么还有百分之六十九点四.
事情发生在2020/03/31的上午8:00.|事情发生在二零二零年三月三十一日的上午八点.
警方正在找一支.22口径的手枪。|警方正在找一支点二二口径的手枪。
欢迎致电中国联通北京2022年冬奥会官方合作伙伴为您服务|欢迎致电中国联通,北京二零二二年冬奥会官方合作伙伴为您服务
充值缴费请按1查询话费及余量请按2跳过本次提醒请按井号键。|充值缴费请按一,查询话费及余量请按二,跳过本次提醒请按井号键。
快速解除流量封顶请按星号键腾讯王卡产品介绍、使用说明、特权及活动请按9查询话费、套餐余量、积分及活动返款请按1手机上网流量开通及取消请按2查询本机号码及本号所使用套餐请按4密码修改及重置请按5紧急开机请按6挂失请按7查询充值记录请按8其它自助服务及人工服务请按0|快速解除流量封顶请按星号键,腾讯王卡产品介绍、使用说明、特权及活动请按九,查询话费、套餐余量、积分及活动返款请按一,手机上网流量开通及取消请按二,查询本机号码及本号所使用套餐请按四,密码修改及重置请按五,紧急开机请按六,挂失请按七,查询充值记录请按八,其它自助服务及人工服务请按零
智能客服助理快速查话费、查流量请按9了解北京联通业务请按1宽带IPTV新装、查询请按2障碍报修请按3充值缴费请按4投诉建议请按5政企业务请按7人工服务请按0for english severice press star key|智能客服助理快速查话费、查流量请按九了解北京联通业务请按一宽带IPTV新装、查询请按二障碍报修请按三充值缴费请按四投诉建议请按五政企业务请按七人工服务请按零for english severice press star key
您的帐户当前可用余额为63.89元本月消费为2.17元。您的消费、套餐余量和其它信息将以短信形式下发,请您注意查收。谢谢使用,再见!。|您的帐户当前可用余额为六十三点八九元,本月消费为二点一七元。您的消费、套餐余量和其它信息将以短信形式下发,请您注意查收。谢谢使用,再见!。
您的帐户当前可用余额为负15.5元本月消费为59.6元。您的消费、套餐余量和其它信息将以短信形式下发,请您注意查收。谢谢使用,再见!。|您的帐户当前可用余额为负十五点五元,本月消费为五十九点六元。您的消费、套餐余量和其它信息将以短信形式下发,请您注意查收。谢谢使用,再见!。
尊敬的客户您目前的话费余额为负14.60元已低于10元为保证您的通信畅通请及时缴纳费用。|尊敬的客户,您目前的话费余额为负十四点六元,已低于十元,为保证您的通信畅通,请及时缴纳费用。
您的流量已用完,为避免您产生额外费用,建议您根据需求开通一个流量包以作补充。|您的流量已用完,为避免您产生额外费用,建议您根据需求开通一个流量包以作补充。
您可以直接说,查询话费及余量、开通流量包、缴费,您也可以说出其它需求,请问有什么可以帮您?|您可以直接说,查询话费及余量、开通流量包、缴费,您也可以说出其它需求,请问有什么可以帮您?
您的账户当前可用余额为负36.00元本月消费36.00元。|您的账户当前可用余额为负三十六元,本月消费三十六元。
请问你是电话13985608526的机主吗|请问你是电话一三九八五六零八五二六的机主吗?
如您对处理结果不满意可拨打中国联通集团投诉电话10015进行投诉按本地通话费收费返回自助服务请按井号键|如您对处理结果不满意,可拨打中国联通集团投诉电话一零零一五进行投诉,按本地通话费收费,返回自助服务请按井号键
“26314”号VIP客服代表为您服务。|“二六三一四”号VIP客服代表为您服务。
尊敬的5G用户欢迎您致电中国联通|尊敬的五G用户欢迎您致电中国联通
首先是应用了M1芯片的iPad Pro新款的iPad Pro支持5G这也是苹果的第二款5G产品线。|首先是应用了M一芯片的iPad Pro新款的iPad Pro支持五G这也是苹果的第二款五G产品线。
除此之外,摄像头方面再次升级,增加了前摄全新超广角摄像头,支持人物居中功能,搭配超广角可实现视频中始终让人物居中效果。|除此之外,摄像头方面再次升级,增加了前摄全新超广角摄像头,支持人物居中功能,搭配超广角可实现视频中始终让人物居中效果。
屏幕方面iPad Pro 12.9版本支持XDR体验的Mini-LEDS显示屏支持HDR10、杜比视界还支持杜比全景声。|屏幕方面iPad Pro 十二点九版本支持XDR体验的Mini-LEDS显示屏支持HDR十、杜比视界还支持杜比全景声。
iPad Pro的秒控键盘这次也推出白色版本。|iPad Pro的秒控键盘这次也推出白色版本。
售价方面11英寸版本售价799美元起12.9英寸售价1099美元起。|售价方面,十一英寸版本售价七百九十九美元起,十二点九英寸售价一千零九十九美元起。
这块黄金重达324.75克|这块黄金重达三百二十四点七五克
她出生于86年8月18日她弟弟出生于1995年3月1日|她出生于八六年八月十八日,她弟弟出生于一九九五年三月一日
电影中梁朝伟扮演的陈永仁的编号27149|电影中梁朝伟扮演的陈永仁的编号二七一四九
现场有7/12的观众投出了赞成票|现场有十二分之七的观众投出了赞成票
随便来几个价格12块534.5元20.1万|随便来几个价格十二块五,三十四点五元,二十点一万
明天有62%的概率降雨|明天有百分之六十二的概率降雨
这是固话0421-33441122|这是固话零四二一三三四四一一二二
这是手机+86 18544139121|这是手机八六一八五四四一三九一二一
小王的身高是153.5cm,梦想是打篮球!我觉得有0.1%的可能性。|小王的身高是一百五十三点五cm,梦想是打篮球!我觉得有百分之零点一的可能性。
不管三七二十一|不管三七二十一
九九八十一难|九九八十一难
2018年5月23号上午10点10分|二零一八年五月二十三号上午十点十分
10076|一零零七六
32.68%|百分之三十二点六八
比分测试17:16|比分测试十七比十六
比分测试37:16|比分测试三十七比十六
1.1|一点一
一点一滴|一点一滴
八九十|八九十
1个人一定要|一个人一定要
10000棵树|一万棵树
1234个人|一千二百三十四个人
35553座楼|三万五千五百五十三座楼
15873690|一五八七三六九零
27930122|二七九三零一二二
85307499|八五三零七四九九
26149787|二六一四九七八七
15964862|一五九六四八六二
45698723|四五六九八七二三
48615964|四八六一五九六四
17864589|一七八六四五八九
123加456|一百二十三加四百五十六
9786加3384|九千七百八十六加三千三百八十四
发电站每天发电30029度电|发电站每天发电三万零二十九度电
银行月交易总额七千九百零三亿元|银行月交易总额七千九百零三亿元
深圳每月平均工资在13000元|深圳每月平均工资在一万三千元
每月房租要交1500元|每月房租要交一千五百元
我每月交通费用在400元左右|我每月交通费用在四百元左右
本月开销费用是51328元|本月开销费用是五万一千三百二十八元
如果你中了五千万元奖金会分我一半吗|如果你中了五千万元奖金会分我一半吗
这个月工资我发了3529元|这个月工资我发了三千五百二十九元
学会了这个技能你至少可以涨薪5000元|学会了这个技能你至少可以涨薪五千元
我们的会议时间定在9点25分开始|我们的会议时间定在九点二十五分开始
上课时间是8点15分请不要迟到|上课时间是八点十五分请不要迟到
昨天你9点21分才到教室|昨天你九点二十一分才到教室
今天是2019年1月31号|今天是二零一九年一月三十一号
今年的除夕夜是2019年2月4号|今年的除夕夜是二零一九年二月四号
这根水管的长度不超过35米|这根水管的长度不超过三十五米
400米是最短的长跑距离|四百米是最短的长跑距离
最高的撑杆跳为11米|最高的撑杆跳为十一米
等会请在12:05请通知我|等会请在十二点零五分请通知我
23点15分开始|二十三点十五分开始
你生日那天我会送你999朵玫瑰|你生日那天我会送你九百九十九朵玫瑰
给我1双鞋我可以跳96米远|给我一双鞋我可以跳九十六米远
虽然我们的身高相差356毫米也不影响我们交往|虽然我们的身高相差三百五十六毫米也不影响我们交往
我们班的最高总分为583分|我们班的最高总分为五百八十三分
今天考试老师多扣了我21分|今天考试老师多扣了我二十一分
我量过这张桌子总长为1.37米|我量过这张桌子总长为一点三七米
乘务员身高必须超过185公分|乘务员身高必须超过一百八十五公分
这台电脑分辨率为1024|这台电脑分辨率为一零二四
手机价格不超过1500元|手机价格不超过一千五百元
101.23|一百零一点二三
123.116|一百二十三点一一六
456.147|四百五十六点一四七
0.1594|零点一五九四
3.1415|三点一四一五
0.112233|零点一一二二三三
0.1|零点一
40001.987|四万零一点九八七
56.878|五十六点八七八
0.00123|零点零零一二三
0.0001|零点零零零一
0.92015|零点九二零一五
999.0001|九百九十九点零零零一
10000.123|一万点一二三
666.555|六百六十六点五五五
444.789|四百四十四点七八九
789.666|七百八十九点六六六
0.12345|零点一二三四五
1.05649|一点零五六四九
环比上调1.86%|环比上调百分之一点八六
环比分别下跌3.46%及微涨0.70%|环比分别下跌百分之三点四六及微涨百分之零点七
单价在30000元的二手房购房个案当中|单价在三万元的二手房购房个案当中
6月仍有7%单价在30000元的房源|六月仍有百分之七单价在三万元的房源
最终也只是以总积分1分之差屈居第2|最终也只是以总积分一分之差屈居第二
中新网8月29日电今日|中新网八月二十九日电今日
自6月底呼和浩特市率先宣布取消限购后|自六月底呼和浩特市率先宣布取消限购后
仅1个多月的时间里|仅一个多月的时间里
除了北京上海广州深圳4个一线城市和三亚之外|除了北京上海广州深圳四个一线城市和三亚之外
46个限购城市当中|四十六个限购城市当中
41个已正式取消或变相放松了限购|四十一个已正式取消或变相放松了限购
其中包括对拥有一套住房并已结清相应购房贷款的家庭|其中包括对拥有一套住房并已结清相应购房贷款的家庭
这个后来被称为930新政策的措施|这个后来被称为九三零新政策的措施
今年有望超三百亿美元|今年有望超三百亿美元
就连一向看多的任志强|就连一向看多的任志强
近期也一反常态地发表看空言论|近期也一反常态地发表看空言论
985|九八五

8
examples/text_frontend/run.sh Executable file
View File

@ -0,0 +1,8 @@
#!/bin/bash
# test g2p
echo "Start test g2p."
python3 test_g2p.py --root-dir=~/datasets/BZNSYP
# test text normalization
echo "Start test text normalization."
python3 test_textnorm.py --test-file=data/textnorm_test_cases.txt

View File

@ -0,0 +1,110 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import re
from collections import defaultdict
from pathlib import Path
from parakeet.frontend.cn_frontend import Frontend as cnFrontend
from parakeet.utils.error_rate import wer
from praatio import tgio
def text_cleaner(raw_text):
text = re.sub('#[1-4]|“|”||', '', raw_text)
text = text.replace("…。", "")
text = re.sub('||——|……|、|…|—', '', text)
return text
def get_baker_data(root_dir):
alignment_files = sorted(
list((root_dir / "PhoneLabeling").rglob("*.interval")))
text_file = root_dir / "ProsodyLabeling/000001-010000.txt"
text_file = Path(text_file).expanduser()
data_dict = defaultdict(dict)
# filter out several files that have errors in annotation
exclude = {'000611', '000662', '002365', '005107'}
alignment_files = [f for f in alignment_files if f.stem not in exclude]
# biaobei 前后有 sil ,中间没有 sp
data_dict = defaultdict(dict)
for alignment_fp in alignment_files:
alignment = tgio.openTextgrid(alignment_fp)
# only with baker's annotation
utt_id = alignment.tierNameList[0].split(".")[0]
intervals = alignment.tierDict[alignment.tierNameList[0]].entryList
phones = []
for interval in intervals:
label = interval.label
# Baker has sp1 rather than sp
label = label.replace("sp1", "sp")
phones.append(label)
data_dict[utt_id]["phones"] = phones
for line in open(text_file, "r"):
if line.startswith("0"):
utt_id, raw_text = line.strip().split()
text = text_cleaner(raw_text)
if utt_id in data_dict:
data_dict[utt_id]['text'] = text
else:
pinyin = line.strip().split()
if utt_id in data_dict:
data_dict[utt_id]['pinyin'] = pinyin
return data_dict
def get_g2p_phones(data_dict, frontend):
for utt_id in data_dict:
g2p_phones = frontend.get_phonemes(data_dict[utt_id]['text'])
data_dict[utt_id]["g2p_phones"] = g2p_phones
return data_dict
def get_avg_wer(data_dict):
wer_list = []
for utt_id in data_dict:
g2p_phones = data_dict[utt_id]['g2p_phones']
# delete silence tokens in predicted phones
g2p_phones = [phn for phn in g2p_phones if phn not in {"sp", "sil"}]
gt_phones = data_dict[utt_id]['phones']
# delete silence tokens in baker phones
gt_phones = [phn for phn in gt_phones if phn not in {"sp", "sil"}]
gt_phones = " ".join(gt_phones)
g2p_phones = " ".join(g2p_phones)
single_wer = wer(gt_phones, g2p_phones)
wer_list.append(single_wer)
return sum(wer_list) / len(wer_list)
def main():
parser = argparse.ArgumentParser(description="g2p example.")
parser.add_argument(
"--root-dir",
default=None,
type=str,
help="directory to baker dataset.")
args = parser.parse_args()
root_dir = Path(args.root_dir).expanduser()
assert root_dir.is_dir()
frontend = cnFrontend()
data_dict = get_baker_data(root_dir)
data_dict = get_g2p_phones(data_dict, frontend)
avg_wer = get_avg_wer(data_dict)
print("The avg WER of g2p is:", avg_wer)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,61 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import re
from pathlib import Path
from parakeet.frontend.cn_normalization.text_normlization import TextNormalizer
from parakeet.utils.error_rate import cer
# delete english characters
# e.g. "你好aBC" -> "你 好"
def del_en_add_space(input: str):
output = re.sub('[a-zA-Z]', '', input)
output = [char + " " for char in output]
output = "".join(output).strip()
return output
def get_avg_cer(test_file, text_normalizer):
cer_list = []
for line in open(test_file, "r"):
line = line.strip()
raw_text, gt_text = line.split("|")
textnorm_text = text_normalizer.normalize_sentence(raw_text)
gt_text = del_en_add_space(gt_text)
textnorm_text = del_en_add_space(textnorm_text)
single_cer = cer(gt_text, textnorm_text)
cer_list.append(single_cer)
return sum(cer_list) / len(cer_list)
def main():
parser = argparse.ArgumentParser(description="text normalization example.")
parser.add_argument(
"--test-file",
default=None,
type=str,
help="path of text normalization test file.")
args = parser.parse_args()
test_file = Path(args.test_file).expanduser()
text_normalizer = TextNormalizer()
avg_cer = get_avg_cer(test_file, text_normalizer)
print("The avg CER of text normalization is:", avg_cer)
if __name__ == "__main__":
main()

View File

@ -35,6 +35,14 @@ class Frontend():
self.g2pM_model = G2pM()
self.pinyin2phone = generate_lexicon(
with_tone=True, with_erhua=False)
self.must_erhua = {"小院儿", "胡同儿", "范儿", "老汉儿", "撒欢儿", "寻老礼儿", "妥妥儿"}
self.not_erhua = {
"虐儿", "为儿", "护儿", "瞒儿", "救儿", "替儿", "有儿", "一儿", "我儿", "俺儿", "妻儿",
"拐儿", "聋儿", "乞儿", "患儿", "幼儿", "孤儿", "婴儿", "婴幼儿", "连体儿", "脑瘫儿",
"流浪儿", "体弱儿", "混血儿", "蜜雪儿", "舫儿", "祖儿", "美儿", "应采儿", "可儿", "侄儿",
"孙儿", "侄孙儿", "女儿", "男儿", "红孩儿", "花儿", "虫儿", "马儿", "鸟儿", "猪儿", "猫儿",
"狗儿"
}
def _get_initials_finals(self, word):
initials = []
@ -71,26 +79,31 @@ class Frontend():
return initials, finals
# if merge_sentences, merge all sentences into one phone sequence
def _g2p(self, sentences, merge_sentences=True):
def _g2p(self, sentences, merge_sentences=True, with_erhua=True):
segments = sentences
phones_list = []
for seg in segments:
phones = []
seg = psg.lcut(seg)
seg_cut = psg.lcut(seg)
initials = []
finals = []
seg = self.tone_modifier.pre_merge_for_modify(seg)
for word, pos in seg:
seg_cut = self.tone_modifier.pre_merge_for_modify(seg_cut)
for word, pos in seg_cut:
if pos == 'eng':
continue
sub_initials, sub_finals = self._get_initials_finals(word)
sub_finals = self.tone_modifier.modified_tone(word, pos,
sub_finals)
if with_erhua:
sub_initials, sub_finals = self._merge_erhua(
sub_initials, sub_finals, word, pos)
initials.append(sub_initials)
finals.append(sub_finals)
# assert len(sub_initials) == len(sub_finals) == len(word)
initials = sum(initials, [])
finals = sum(finals, [])
for c, v in zip(initials, finals):
# NOTE: post process for pypinyin outputs
# we discriminate i, ii and iii
@ -106,7 +119,24 @@ class Frontend():
phones_list = sum(phones_list, [])
return phones_list
def get_phonemes(self, sentence):
def _merge_erhua(self, initials, finals, word, pos):
if word not in self.must_erhua and (word in self.not_erhua or
pos in {"a", "j", "nr"}):
return initials, finals
new_initials = []
new_finals = []
assert len(finals) == len(word)
for i, phn in enumerate(finals):
if i == len(finals) - 1 and word[i] == "" and phn in {
"er2", "er5"
} and word[-2:] not in self.not_erhua and new_finals:
new_finals[-1] = new_finals[-1][:-1] + "r" + new_finals[-1][-1]
else:
new_finals.append(phn)
new_initials.append(initials[i])
return new_initials, new_finals
def get_phonemes(self, sentence, with_erhua=True):
sentences = self.text_normalizer.normalize(sentence)
phonemes = self._g2p(sentences)
phonemes = self._g2p(sentences, with_erhua=with_erhua)
return phonemes

View File

@ -29,6 +29,8 @@ UNITS = OrderedDict({
8: '亿',
})
COM_QUANTIFIERS = '(匹|张|座|回|场|尾|条|个|首|阙|阵|网|炮|顶|丘|棵|只|支|袭|辆|挑|担|颗|壳|窠|曲|墙|群|腔|砣|座|客|贯|扎|捆|刀|令|打|手|罗|坡|山|岭|江|溪|钟|队|单|双|对|出|口|头|脚|板|跳|枝|件|贴|针|线|管|名|位|身|堂|课|本|页|家|户|层|丝|毫|厘|分|钱|两|斤|担|铢|石|钧|锱|忽|(千|毫|微)克|毫|厘|分|寸|尺|丈|里|寻|常|铺|程|(千|分|厘|毫|微)米|撮|勺|合|升|斗|石|盘|碗|碟|叠|桶|笼|盆|盒|杯|钟|斛|锅|簋|篮|盘|桶|罐|瓶|壶|卮|盏|箩|箱|煲|啖|袋|钵|年|月|日|季|刻|时|周|天|秒|分|旬|纪|岁|世|更|夜|春|夏|秋|冬|代|伏|辈|丸|泡|粒|颗|幢|堆|条|根|支|道|面|片|张|颗|块|元|(亿|千万|百万|万|千|百)|(亿|千万|百万|万|千|百|美|)元|(亿|千万|百万|万|千|百|)块|角|毛|分)'
# 分数表达式
RE_FRAC = re.compile(r'(-?)(\d+)/(\d+)')
@ -59,7 +61,17 @@ def replace_percentage(match: re.Match) -> str:
# 整数表达式
# 带负号或者不带负号的整数 12, -10
RE_INTEGER = re.compile(r'(-?)' r'(\d+)')
RE_INTEGER = re.compile(r'(-)' r'(\d+)')
def replace_negative_num(match: re.Match) -> str:
sign = match.group(1)
number = match.group(2)
sign: str = "" if sign else ""
number: str = num2str(number)
result = f"{sign}{number}"
return result
# 编号-无符号整形
# 00078
@ -72,12 +84,23 @@ def replace_default_num(match: re.Match):
# 数字表达式
# 1. 整数: -10, 10;
# 2. 浮点数: 10.2, -0.3
# 3. 不带符号和整数部分的纯浮点数: .22, .38
# 纯小数
RE_DECIMAL_NUM = re.compile(r'(-?)((\d+)(\.\d+))' r'|(\.(\d+))')
# 正整数 + 量词
RE_POSITIVE_QUANTIFIERS = re.compile(r"(\d+)([多余几])?" + COM_QUANTIFIERS)
RE_NUMBER = re.compile(r'(-?)((\d+)(\.\d+)?)' r'|(\.(\d+))')
def replace_positive_quantifier(match: re.Match) -> str:
number = match.group(1)
match_2 = match.group(2)
match_2: str = match_2 if match_2 else ""
quantifiers: str = match.group(3)
number: str = num2str(number)
result = f"{number}{match_2}{quantifiers}"
return result
def replace_number(match: re.Match) -> str:
sign = match.group(1)
number = match.group(2)
@ -93,7 +116,7 @@ def replace_number(match: re.Match) -> str:
# 范围表达式
# 12-23, 12~23
RE_RANGE = re.compile(r'(\d+)[-~](\d+)')
RE_RANGE = re.compile(r'(\d+)[~](\d+)')
def replace_range(match: re.Match) -> str:

View File

@ -25,7 +25,7 @@ from .num import verbalize_digit
RE_MOBILE_PHONE = re.compile(
r"(?<!\d)((\+?86 ?)?1([38]\d|5[0-35-9]|7[678]|9[89])\d{8})(?!\d)")
RE_TELEPHONE = re.compile(
r"(?<!\d)((0(10|2[1-3]|[3-9]\d{2})-?)?[1-9]\d{6,7})(?!\d)")
r"(?<!\d)((0(10|2[1-3]|[3-9]\d{2})-?)?[1-9]\d{7,8})(?!\d)")
def phone2str(phone_string: str, mobile=True) -> str:
@ -44,4 +44,8 @@ def phone2str(phone_string: str, mobile=True) -> str:
def replace_phone(match: re.Match) -> str:
return phone2str(match.group(0), mobile=False)
def replace_mobile(match: re.Match) -> str:
return phone2str(match.group(0))

View File

@ -12,16 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import opencc
import re
from typing import List
from .chronology import RE_TIME, RE_DATE, RE_DATE2
from .chronology import replace_time, replace_date, replace_date2
from .constants import F2H_ASCII_LETTERS, F2H_DIGITS, F2H_SPACE
from .num import RE_NUMBER, RE_FRAC, RE_PERCENTAGE, RE_RANGE, RE_INTEGER, RE_DEFAULT_NUM
from .num import replace_number, replace_frac, replace_percentage, replace_range, replace_default_num
from .phonecode import RE_MOBILE_PHONE, RE_TELEPHONE, replace_phone
from .num import RE_NUMBER, RE_FRAC, RE_PERCENTAGE, RE_RANGE, RE_INTEGER, RE_DEFAULT_NUM, RE_DECIMAL_NUM, RE_POSITIVE_QUANTIFIERS
from .num import replace_number, replace_frac, replace_percentage, replace_range, replace_default_num, replace_negative_num, replace_positive_quantifier
from .phonecode import RE_MOBILE_PHONE, RE_TELEPHONE, replace_phone, replace_mobile
from .quantifier import RE_TEMPERATURE
from .quantifier import replace_temperature
@ -29,8 +28,6 @@ from .quantifier import replace_temperature
class TextNormalizer():
def __init__(self):
self.SENTENCE_SPLITOR = re.compile(r'([:,;。?!,;?!][”’]?)')
self._t2s_converter = opencc.OpenCC("t2s.json")
self._s2t_converter = opencc.OpenCC('s2t.json')
def _split(self, text: str) -> List[str]:
"""Split long text into sentences with sentence-splitting punctuations.
@ -48,15 +45,8 @@ class TextNormalizer():
sentences = [sentence.strip() for sentence in re.split(r'\n+', text)]
return sentences
def _tranditional_to_simplified(self, text: str) -> str:
return self._t2s_converter.convert(text)
def _simplified_to_traditional(self, text: str) -> str:
return self._s2t_converter.convert(text)
def normalize_sentence(self, sentence):
# basic character conversions
sentence = self._tranditional_to_simplified(sentence)
sentence = sentence.translate(F2H_ASCII_LETTERS).translate(
F2H_DIGITS).translate(F2H_SPACE)
@ -68,8 +58,12 @@ class TextNormalizer():
sentence = RE_RANGE.sub(replace_range, sentence)
sentence = RE_FRAC.sub(replace_frac, sentence)
sentence = RE_PERCENTAGE.sub(replace_percentage, sentence)
sentence = RE_MOBILE_PHONE.sub(replace_phone, sentence)
sentence = RE_MOBILE_PHONE.sub(replace_mobile, sentence)
sentence = RE_TELEPHONE.sub(replace_phone, sentence)
sentence = RE_INTEGER.sub(replace_negative_num, sentence)
sentence = RE_DECIMAL_NUM.sub(replace_number, sentence)
sentence = RE_POSITIVE_QUANTIFIERS.sub(replace_positive_quantifier,
sentence)
sentence = RE_DEFAULT_NUM.sub(replace_default_num, sentence)
sentence = RE_NUMBER.sub(replace_number, sentence)

View File

@ -56,7 +56,14 @@ class ToneSandhi():
'凑合', '凉快', '冷战', '冤枉', '冒失', '养活', '关系', '先生', '兄弟', '便宜', '使唤',
'佩服', '作坊', '体面', '位置', '似的', '伙计', '休息', '什么', '人家', '亲戚', '亲家',
'交情', '云彩', '事情', '买卖', '主意', '丫头', '丧气', '两口', '东西', '东家', '世故',
'不由', '不在', '下水', '下巴', '上头', '上司', '丈夫', '丈人', '一辈', '那个'
'不由', '不在', '下水', '下巴', '上头', '上司', '丈夫', '丈人', '一辈', '那个', '菩萨',
'父亲', '母亲', '咕噜', '邋遢', '费用', '冤家', '甜头', '介绍', '荒唐', '大人', '泥鳅',
'幸福', '熟悉', '计划', '扑腾', '蜡烛', '姥爷', '照顾', '喉咙', '吉他', '弄堂', '蚂蚱',
'凤凰', '拖沓', '寒碜', '糟蹋', '倒腾', '报复', '逻辑', '盘缠', '喽啰', '牢骚', '咖喱',
'扫把', '惦记'
}
self.must_not_neural_tone_words = {
"男子", "女子", "分子", "原子", "量子", "莲子", "石子", "瓜子", "电子"
}
# the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
@ -66,71 +73,90 @@ class ToneSandhi():
# finals: ['ia1', 'i3']
def _neural_sandhi(self, word: str, pos: str,
finals: List[str]) -> List[str]:
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
for j, item in enumerate(word):
if j - 1 >= 0 and item == word[j - 1] and pos[
0] in {"n", "v", "a"}:
finals[j] = finals[j][:-1] + "5"
ge_idx = word.find("")
if len(word) == 1 and word in "吧呢啊嘛" and pos == 'y':
if len(word) >= 1 and word[-1] in "吧呢哈啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
finals[-1] = finals[-1][:-1] + "5"
elif len(word) == 1 and word in "的地得" and pos in {"ud", "uj", "uv"}:
elif len(word) >= 1 and word[-1] in "的地得":
finals[-1] = finals[-1][:-1] + "5"
# e.g. 走了, 看着, 去过
elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
finals[-1] = finals[-1][:-1] + "5"
elif len(word) > 1 and word[-1] in "们子" and pos in {"r", "n"}:
elif len(word) > 1 and word[-1] in "们子" and pos in {
"r", "n"
} and word not in self.must_not_neural_tone_words:
finals[-1] = finals[-1][:-1] + "5"
# e.g. 桌上, 地下, 家里
elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
finals[-1] = finals[-1][:-1] + "5"
# e.g. 上来, 下去
elif len(word) > 1 and word[-1] in "来去" and pos[0] in {"v"}:
elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
finals[-1] = finals[-1][:-1] + "5"
# 个做量词
elif ge_idx >= 1 and word[ge_idx - 1].isnumeric():
elif (ge_idx >= 1 and
(word[ge_idx - 1].isnumeric() or
word[ge_idx - 1] in "几有两半多各整每做是")) or word == '':
finals[ge_idx] = finals[ge_idx][:-1] + "5"
# reduplication words for n. and v. e.g. 奶奶, 试试
elif len(word) >= 2 and word[-1] == word[-2] and pos[0] in {"n", "v"}:
finals[-1] = finals[-1][:-1] + "5"
# conventional tone5 in Chinese
elif word in self.must_neural_tone_words or word[
else:
if word in self.must_neural_tone_words or word[
-2:] in self.must_neural_tone_words:
finals[-1] = finals[-1][:-1] + "5"
word_list = self._split_word(word)
finals_list = [finals[:len(word_list[0])], finals[len(word_list[0]):]]
for i, word in enumerate(word_list):
# conventional neural in Chinese
if word in self.must_neural_tone_words or word[
-2:] in self.must_neural_tone_words:
finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
finals = sum(finals_list, [])
return finals
def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
# "不" before tone4 should be bu2, e.g. 不怕
if len(word) > 1 and word[0] == "" and finals[1][-1] == "4":
finals[0] = finals[0][:-1] + "2"
# e.g. 看不懂
elif len(word) == 3 and word[1] == "":
if len(word) == 3 and word[1] == "":
finals[1] = finals[1][:-1] + "5"
else:
for i, char in enumerate(word):
# "不" before tone4 should be bu2, e.g. 不怕
if char == "" and i + 1 < len(word) and finals[i + 1][
-1] == "4":
finals[i] = finals[i][:-1] + "2"
return finals
def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
# "一" in number sequences, e.g. 一零零
if len(word) > 1 and word[0] == "" and all(
[item.isnumeric() for item in word]):
# "一" in number sequences, e.g. 一零零, 二一零
if word.find("") != -1 and all(
[item.isnumeric() for item in word if item != ""]):
return finals
# "一" before tone4 should be yi2, e.g. 一段
elif len(word) > 1 and word[0] == "" and finals[1][-1] == "4":
finals[0] = finals[0][:-1] + "2"
# "一" before non-tone4 should be yi4, e.g. 一天
elif len(word) > 1 and word[0] == "" and finals[1][-1] != "4":
finals[0] = finals[0][:-1] + "4"
# "一" between reduplication words shold be yi5, e.g. 看一看
elif len(word) == 3 and word[1] == "" and word[0] == word[-1]:
finals[1] = finals[1][:-1] + "5"
# when "一" is ordinal word, it should be yi1
elif word.startswith("第一"):
finals[1] = finals[1][:-1] + "1"
else:
for i, char in enumerate(word):
if char == "" and i + 1 < len(word):
# "一" before tone4 should be yi2, e.g. 一段
if finals[i + 1][-1] == "4":
finals[i] = finals[i][:-1] + "2"
# "一" before non-tone4 should be yi4, e.g. 一天
else:
finals[i] = finals[i][:-1] + "4"
return finals
def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
if len(word) == 2 and self._all_tone_three(finals):
finals[0] = finals[0][:-1] + "2"
elif len(word) == 3:
def _split_word(self, word):
word_list = jieba.cut_for_search(word)
word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
new_word_list = []
first_subword = word_list[0]
first_begin_idx = word.find(first_subword)
if first_begin_idx == 0:
@ -138,20 +164,25 @@ class ToneSandhi():
new_word_list = [first_subword, second_subword]
else:
second_subword = word[:-len(first_subword)]
new_word_list = [second_subword, first_subword]
return new_word_list
def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
if len(word) == 2 and self._all_tone_three(finals):
finals[0] = finals[0][:-1] + "2"
elif len(word) == 3:
word_list = self._split_word(word)
if self._all_tone_three(finals):
# disyllabic + monosyllabic, e.g. 蒙古/包
if len(new_word_list[0]) == 2:
if len(word_list[0]) == 2:
finals[0] = finals[0][:-1] + "2"
finals[1] = finals[1][:-1] + "2"
# monosyllabic + disyllabic, e.g. 纸/老虎
elif len(new_word_list[0]) == 1:
elif len(word_list[0]) == 1:
finals[1] = finals[1][:-1] + "2"
else:
finals_list = [
finals[:len(new_word_list[0])],
finals[len(new_word_list[0]):]
finals[:len(word_list[0])], finals[len(word_list[0]):]
]
if len(finals_list) == 2:
for i, sub in enumerate(finals_list):
@ -192,8 +223,7 @@ class ToneSandhi():
if last_word == "":
new_seg.append((last_word, 'd'))
last_word = ""
seg = new_seg
return seg
return new_seg
# function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
# function 2: merge single "一" and the word behind it
@ -222,9 +252,9 @@ class ToneSandhi():
new_seg[-1][0] = new_seg[-1][0] + word
else:
new_seg.append([word, pos])
seg = new_seg
return seg
return new_seg
# the first and the second words are all_tone_three
def _merge_continuous_three_tones(
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
@ -239,21 +269,73 @@ class ToneSandhi():
if i - 1 >= 0 and self._all_tone_three(sub_finals_list[
i - 1]) and self._all_tone_three(sub_finals_list[
i]) and not merge_last[i - 1]:
if len(seg[i - 1][0]) + len(seg[i][0]) <= 3:
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
if not self._is_reduplication(seg[i - 1][0]) and len(seg[
i - 1][0]) + len(seg[i][0]) <= 3:
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
merge_last[i] = True
else:
new_seg.append([word, pos])
else:
new_seg.append([word, pos])
seg = new_seg
return seg
return new_seg
def _is_reduplication(self, word):
return len(word) == 2 and word[0] == word[1]
# the last char of first word and the first char of second word is tone_three
def _merge_continuous_three_tones_2(
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
sub_finals_list = [
lazy_pinyin(
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
for (word, pos) in seg
]
assert len(sub_finals_list) == len(seg)
merge_last = [False] * len(seg)
for i, (word, pos) in enumerate(seg):
if i - 1 >= 0 and sub_finals_list[i - 1][-1][-1] == "3" and sub_finals_list[i][0][-1] == "3" and not \
merge_last[i - 1]:
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
if not self._is_reduplication(seg[i - 1][0]) and len(seg[
i - 1][0]) + len(seg[i][0]) <= 3:
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
merge_last[i] = True
else:
new_seg.append([word, pos])
else:
new_seg.append([word, pos])
return new_seg
def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
for i, (word, pos) in enumerate(seg):
if i - 1 >= 0 and word == "":
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
else:
new_seg.append([word, pos])
return new_seg
def _merge_reduplication(
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
new_seg = []
for i, (word, pos) in enumerate(seg):
if new_seg and word == new_seg[-1][0]:
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
else:
new_seg.append([word, pos])
return new_seg
def pre_merge_for_modify(
self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
seg = self._merge_bu(seg)
seg = self._merge_yi(seg)
seg = self._merge_reduplication(seg)
seg = self._merge_continuous_three_tones(seg)
seg = self._merge_continuous_three_tones_2(seg)
seg = self._merge_er(seg)
return seg
def modified_tone(self, word: str, pos: str,

View File

@ -0,0 +1,239 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This module provides functions to calculate error rate in different level.
e.g. wer for word-level, cer for char-level.
"""
import numpy as np
__all__ = ['word_errors', 'char_errors', 'wer', 'cer']
def _levenshtein_distance(ref, hyp):
"""Levenshtein distance is a string metric for measuring the difference
between two sequences. Informally, the levenshtein disctance is defined as
the minimum number of single-character edits (substitutions, insertions or
deletions) required to change one word into the other. We can naturally
extend the edits to word level when calculate levenshtein disctance for
two sentences.
"""
m = len(ref)
n = len(hyp)
# special case
if ref == hyp:
return 0
if m == 0:
return n
if n == 0:
return m
if m < n:
ref, hyp = hyp, ref
m, n = n, m
# use O(min(m, n)) space
distance = np.zeros((2, n + 1), dtype=np.int32)
# initialize distance matrix
for j in range(n + 1):
distance[0][j] = j
# calculate levenshtein distance
for i in range(1, m + 1):
prev_row_idx = (i - 1) % 2
cur_row_idx = i % 2
distance[cur_row_idx][0] = i
for j in range(1, n + 1):
if ref[i - 1] == hyp[j - 1]:
distance[cur_row_idx][j] = distance[prev_row_idx][j - 1]
else:
s_num = distance[prev_row_idx][j - 1] + 1
i_num = distance[cur_row_idx][j - 1] + 1
d_num = distance[prev_row_idx][j] + 1
distance[cur_row_idx][j] = min(s_num, i_num, d_num)
return distance[m % 2][n]
def word_errors(reference, hypothesis, ignore_case=False, delimiter=' '):
"""Compute the levenshtein distance between reference sequence and
hypothesis sequence in word-level.
Parameters
----------
reference : str
The reference sentence.
hypothesis : str
The hypothesis sentence.
ignore_case : bool
Whether case-sensitive or not.
delimiter : char(str)
Delimiter of input sentences.
Returns
----------
list
Levenshtein distance and word number of reference sentence.
"""
if ignore_case:
reference = reference.lower()
hypothesis = hypothesis.lower()
ref_words = list(filter(None, reference.split(delimiter)))
hyp_words = list(filter(None, hypothesis.split(delimiter)))
edit_distance = _levenshtein_distance(ref_words, hyp_words)
return float(edit_distance), len(ref_words)
def char_errors(reference, hypothesis, ignore_case=False, remove_space=False):
"""Compute the levenshtein distance between reference sequence and
hypothesis sequence in char-level.
Parameters
----------
reference: str
The reference sentence.
hypothesis: str
The hypothesis sentence.
ignore_case: bool
Whether case-sensitive or not.
remove_space: bool
Whether remove internal space characters
Returns
----------
list
Levenshtein distance and length of reference sentence.
"""
if ignore_case:
reference = reference.lower()
hypothesis = hypothesis.lower()
join_char = ' '
if remove_space:
join_char = ''
reference = join_char.join(list(filter(None, reference.split(' '))))
hypothesis = join_char.join(list(filter(None, hypothesis.split(' '))))
edit_distance = _levenshtein_distance(reference, hypothesis)
return float(edit_distance), len(reference)
def wer(reference, hypothesis, ignore_case=False, delimiter=' '):
"""Calculate word error rate (WER). WER compares reference text and
hypothesis text in word-level. WER is defined as:
.. math::
WER = (Sw + Dw + Iw) / Nw
where
.. code-block:: text
Sw is the number of words subsituted,
Dw is the number of words deleted,
Iw is the number of words inserted,
Nw is the number of words in the reference
We can use levenshtein distance to calculate WER. Please draw an attention
that empty items will be removed when splitting sentences by delimiter.
Parameters
----------
reference: str
The reference sentence.
hypothesis: str
The hypothesis sentence.
ignore_case: bool
Whether case-sensitive or not.
delimiter: char
Delimiter of input sentences.
Returns
----------
float
Word error rate.
Raises
----------
ValueError
If word number of reference is zero.
"""
edit_distance, ref_len = word_errors(reference, hypothesis, ignore_case,
delimiter)
if ref_len == 0:
raise ValueError("Reference's word number should be greater than 0.")
wer = float(edit_distance) / ref_len
return wer
def cer(reference, hypothesis, ignore_case=False, remove_space=False):
"""Calculate charactor error rate (CER). CER compares reference text and
hypothesis text in char-level. CER is defined as:
.. math::
CER = (Sc + Dc + Ic) / Nc
where
.. code-block:: text
Sc is the number of characters substituted,
Dc is the number of characters deleted,
Ic is the number of characters inserted
Nc is the number of characters in the reference
We can use levenshtein distance to calculate CER. Chinese input should be
encoded to unicode. Please draw an attention that the leading and tailing
space characters will be truncated and multiple consecutive space
characters in a sentence will be replaced by one space character.
Parameters
----------
reference: str
The reference sentence.
hypothesis: str
The hypothesis sentence.
ignore_case: bool
Whether case-sensitive or not.
remove_space: bool
Whether remove internal space characters
Returns
----------
float
Character error rate.
Raises
----------
ValueError
If the reference length is zero.
"""
edit_distance, ref_len = char_errors(reference, hypothesis, ignore_case,
remove_space)
if ref_len == 0:
raise ValueError("Length of reference should be greater than 0.")
cer = float(edit_distance) / ref_len
return cer
if __name__ == "__main__":
reference = [
'j', 'iou4', 'zh', 'e4', 'iang5', 'x', 'v2', 'b', 'o1', 'k', 'ai1',
'sh', 'iii3', 'l', 'e5', 'b', 'ei3', 'p', 'iao1', 'sh', 'eng1', 'ia2'
]
hypothesis = [
'j', 'iou4', 'zh', 'e4', 'iang4', 'x', 'v2', 'b', 'o1', 'k', 'ai1',
'sh', 'iii3', 'l', 'e5', 'b', 'ei3', 'p', 'iao1', 'sh', 'eng1', 'ia2'
]
reference = " ".join(reference)
hypothesis = " ".join(hypothesis)
print(wer(reference, hypothesis))

View File

@ -71,10 +71,13 @@ setup_info = dict(
'pypinyin',
'webrtcvad',
'g2pM',
'praatio',
'praatio~=4.1',
"h5py",
"timer",
'jsonlines',
'pyworld',
'typeguard',
'jieba',
],
extras_require={'doc': ["sphinx", "sphinx-rtd-theme", "numpydoc"], },