1. fix format errors and typos

This commit is contained in:
iclementine 2020-12-18 16:09:38 +08:00
parent d78a8b4e1e
commit 310366bb54
6 changed files with 34 additions and 33 deletions

View File

@ -24,7 +24,7 @@ def scaled_dot_product_attention(q,
mask=None, mask=None,
dropout=0.0, dropout=0.0,
training=True): training=True):
"""Scaled dot product attention with masking. r"""Scaled dot product attention with masking.
Assume that q, k, v all have the same leading dimensions (denoted as * in Assume that q, k, v all have the same leading dimensions (denoted as * in
descriptions below). Dropout is applied to attention weights before descriptions below). Dropout is applied to attention weights before
@ -33,24 +33,24 @@ def scaled_dot_product_attention(q,
Parameters Parameters
----------- -----------
q : Tensor [shape=(*, T_q, d)] q : Tensor [shape=(\*, T_q, d)]
the query tensor. the query tensor.
k : Tensor [shape=(*, T_k, d)] k : Tensor [shape=(\*, T_k, d)]
the key tensor. the key tensor.
v : Tensor [shape=(*, T_k, d_v)] v : Tensor [shape=(\*, T_k, d_v)]
the value tensor. the value tensor.
mask : Tensor, [shape=(*, T_q, T_k) or broadcastable shape], optional mask : Tensor, [shape=(\*, T_q, T_k) or broadcastable shape], optional
the mask tensor, zeros correspond to paddings. Defaults to None. the mask tensor, zeros correspond to paddings. Defaults to None.
Returns Returns
---------- ----------
out : Tensor [shape=(*, T_q, d_v)] out : Tensor [shape=(\*, T_q, d_v)]
the context vector. the context vector.
attn_weights : Tensor [shape=(*, T_q, T_k)] attn_weights : Tensor [shape=(\*, T_q, T_k)]
the attention weights. the attention weights.
""" """
d = q.shape[-1] # we only support imperative execution d = q.shape[-1] # we only support imperative execution
@ -208,16 +208,16 @@ class MultiheadAttention(nn.Layer):
k_dim : int, optional k_dim : int, optional
Feature size of the key of each scaled dot product attention. If not Feature size of the key of each scaled dot product attention. If not
provided, it is set to `model_dim / num_heads`. Defaults to None. provided, it is set to ``model_dim / num_heads``. Defaults to None.
v_dim : int, optional v_dim : int, optional
Feature size of the key of each scaled dot product attention. If not Feature size of the key of each scaled dot product attention. If not
provided, it is set to `model_dim / num_heads`. Defaults to None. provided, it is set to ``model_dim / num_heads``. Defaults to None.
Raises Raises
--------- ---------
ValueError ValueError
if `model_dim` is not divisible by `num_heads`. If ``model_dim`` is not divisible by ``num_heads``.
""" """
def __init__(self, def __init__(self,
model_dim: int, model_dim: int,

View File

@ -151,7 +151,7 @@ class STFT(nn.Layer):
Returns Returns
------------ ------------
Tensor [shape=(B, C, 1, T)] Tensor [shape=(B, C, 1, T)]
The power spectrum. (C = 1 + `n_fft` // 2) The power spectrum.
""" """
real, imag = self(x) real, imag = self(x)
power = real**2 + imag**2 power = real**2 + imag**2
@ -168,7 +168,7 @@ class STFT(nn.Layer):
Returns Returns
------------ ------------
Tensor [shape=(B, C, 1, T)] Tensor [shape=(B, C, 1, T)]
The magnitude of the spectrum. (C = 1 + `n_fft` // 2) The magnitude of the spectrum.
""" """
power = self.power(x) power = self.power(x)
magnitude = paddle.sqrt(power) magnitude = paddle.sqrt(power)

View File

@ -6,18 +6,18 @@ def shuffle_dim(x, axis, perm=None):
Parameters Parameters
---------- ----------
x : Tensor x : Tensor
The input tensor. The input tensor.
axis : int axis : int
The axis to shuffle. The axis to shuffle.
perm : List[int], ndarray, optional perm : List[int], ndarray, optional
The order to reorder the tensor along the `axis`-th dimension. The order to reorder the tensor along the ``axis``-th dimension.
It is a permutation of ``[0, d)``, where d is the size of the It is a permutation of ``[0, d)``, where d is the size of the
``axis``-th dimension of the input tensor. If not provided, ``axis``-th dimension of the input tensor. If not provided,
a random permutation is used. Defaults to None. a random permutation is used. Defaults to None.
Returns Returns
--------- ---------

View File

@ -18,8 +18,8 @@ def weighted_mean(input, weight):
----------- -----------
input : Tensor input : Tensor
The input tensor. The input tensor.
weight : Tensor [broadcastable shape with the input] weight : Tensor
The weight tensor. The weight tensor with broadcastable shape with the input.
Returns Returns
---------- ----------

View File

@ -54,7 +54,7 @@ def feature_mask(input, axis, dtype="bool"):
Returns Returns
------- -------
Tensor Tensor
The geenrated mask with `spatial` shape as mentioned above. The geenrated mask with ``spatial`` shape as mentioned above.
It has one less dimension than ``input`` does. It has one less dimension than ``input`` does.
""" """
@ -103,7 +103,7 @@ def future_mask(time_steps, dtype="bool"):
time_steps : int time_steps : int
Decoder time steps. Decoder time steps.
dtype : str, optional dtype : str, optional
The data type of the generate mask, by default "bool" The data type of the generate mask, by default "bool".
Returns Returns
------- -------

View File

@ -43,16 +43,16 @@ class PositionwiseFFN(nn.Layer):
self.hidden_szie = hidden_size self.hidden_szie = hidden_size
def forward(self, x): def forward(self, x):
"""Forward pass of positionwise feed forward network. r"""Forward pass of positionwise feed forward network.
Parameters Parameters
---------- ----------
x : Tensor [shape=(*, input_size)] x : Tensor [shape=(\*, input_size)]
The input tensor, where ``\*`` means arbitary shape. The input tensor, where ``\*`` means arbitary shape.
Returns Returns
------- -------
Tensor [shape=(*, input_size)] Tensor [shape=(\*, input_size)]
The output tensor. The output tensor.
""" """
l1 = self.dropout(F.relu(self.linear1(x))) l1 = self.dropout(F.relu(self.linear1(x)))
@ -104,8 +104,9 @@ class TransformerEncoderLayer(nn.Layer):
x : Tensor [shape=(batch_size, time_steps, d_model)] x : Tensor [shape=(batch_size, time_steps, d_model)]
The input. The input.
mask : Tensor [shape=(batch_size, time_steps, time_steps) or broadcastable shape] mask : Tensor
The padding mask. The padding mask. The shape is (batch_size, time_steps,
time_steps) or broadcastable shape.
Returns Returns
------- -------