Upgrade waveflow api to 1.8.2

This commit is contained in:
Yibing Liu 2020-06-12 08:45:55 +00:00
parent b7c584e2f7
commit 33ed693ccf
3 changed files with 6 additions and 16 deletions

View File

@ -40,7 +40,7 @@ sudo apt-get install libsndfile1
### Install PaddlePaddle
See [install](https://www.paddlepaddle.org.cn/install/quick) for more details. This repo requires PaddlePaddle **1.8.0** or above.
See [install](https://www.paddlepaddle.org.cn/install/quick) for more details. This repo requires PaddlePaddle **1.8.2** or above.
### Install Parakeet
@ -177,7 +177,7 @@ We provide the model checkpoints of WaveFlow with 64 and 128 residual channels,
We also provide checkpoints for different end-to-end TTS models, and present the synthesized audio examples for some randomly chosen famous quotes. The corresponding texts are displayed as follows.
||Text | From |
|:-:|:-- | :--: |
|:-:|:-- | :--: |
0|*Life was like a box of chocolates, you never know what you're gonna get.* | *Forrest Gump* |
1|*With great power there must come great responsibility.* | *Spider-Man*|
2|*To be or not to be, thats a question.*|*Hamlet*|
@ -232,7 +232,7 @@ Users have the option to use different vocoders to convert the linear/mel spectr
<a href="https://paddlespeech.bj.bcebos.com/Parakeet/transformer_tts_ljspeech_griffin-lim_samples_1.0/step_120000_sentence_3.wav">
<img src="images/audio_icon.png" width=250 /></a><br>
<a href="https://paddlespeech.bj.bcebos.com/Parakeet/transformer_tts_ljspeech_griffin-lim_samples_1.0/step_120000_sentence_4.wav">
<img src="images/audio_icon.png" width=250 /></a>
<img src="images/audio_icon.png" width=250 /></a>
</th>
<th >
<a href="https://paddlespeech.bj.bcebos.com/Parakeet/fastspeech_ljspeech_griffin-lim_samples_1.0/step_130000_sentence_0.wav">
@ -244,7 +244,7 @@ Users have the option to use different vocoders to convert the linear/mel spectr
<a href="https://paddlespeech.bj.bcebos.com/Parakeet/fastspeech_ljspeech_griffin-lim_samples_1.0/step_130000_sentence_3.wav">
<img src="images/audio_icon.png" width=250 /></a><br>
<a href="https://paddlespeech.bj.bcebos.com/Parakeet/fastspeech_ljspeech_griffin-lim_samples_1.0/step_130000_sentence_4.wav">
<img src="images/audio_icon.png" width=250 /></a>
<img src="images/audio_icon.png" width=250 /></a>
</th>
</tr>
</tbody>

View File

@ -79,7 +79,7 @@ class Conditioner(dg.Layer):
stride=(1, s),
param_attr=param_attr,
bias_attr=bias_attr,
dtype="float32")
dtype=dtype)
self.upsample_conv2d.append(conv_trans2d)
for i, layer in enumerate(self.upsample_conv2d):
@ -88,12 +88,7 @@ class Conditioner(dg.Layer):
def forward(self, x):
x = fluid.layers.unsqueeze(x, 1)
for layer in self.upsample_conv2d:
in_dtype = x.dtype
if in_dtype == fluid.core.VarDesc.VarType.FP16:
x = fluid.layers.cast(x, "float32")
x = layer(x)
if in_dtype == fluid.core.VarDesc.VarType.FP16:
x = fluid.layers.cast(x, "float16")
x = fluid.layers.leaky_relu(x, alpha=0.4)
return fluid.layers.squeeze(x, [1])
@ -101,12 +96,7 @@ class Conditioner(dg.Layer):
def infer(self, x):
x = fluid.layers.unsqueeze(x, 1)
for layer in self.upsample_conv2d:
in_dtype = x.dtype
if in_dtype == fluid.core.VarDesc.VarType.FP16:
x = fluid.layers.cast(x, "float32")
x = layer(x)
if in_dtype == fluid.core.VarDesc.VarType.FP16:
x = fluid.layers.cast(x, "float16")
# Trim conv artifacts.
time_cutoff = layer._filter_size[1] - layer._stride[1]
x = fluid.layers.leaky_relu(x[:, :, :, :-time_cutoff], alpha=0.4)

View File

@ -55,7 +55,7 @@ setup_info = dict(
'inflect',
'librosa',
'unidecode',
'numba==0.48.0',
'numba==0.47.0',
'tqdm==4.19.8',
'matplotlib',
'tensorboardX',